Finite vs affine W-algebras
Tóm tắt
Từ khóa
Tài liệu tham khảo
A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math., 139 (2000), 135–172.
T. Arakawa, Representation theory of superconformal algebras and the Kac–Roan–Wakimoto conjecture, math-ph/0405015.
T. Arakawa, Representation theory of W-algebras, math.QA/0506056.
R. Borcherds, Vertex algebras, Kac–Moody algebras and the Monster, Proc. Natl. Acad. Sci. USA, 83 (1986), 3068–3071.
J. de Boer and T. Tjin, Quantization and representation theory of finite W-algebras, Comm. Math. Phys., 158 (1993), 485–516.
J. de Boer and T. Tjin, The relation between quantum W-algebras and Lie algebras, Comm. Math. Phys., 160 (1994), 317–332.
J. Brundan and S.M. Goodwin, Good gradings polytopes, math.QA/0510205.
J. Brundan and A. Kleshchev, Shifted Yangians and finite W-algebras, Adv. Math., to appear.
A. D’Andrea and V.G. Kac, Structure theory of finite conformal algebras, Selecta Math., 4 (1998), 377–418.
A. De Sole and V.G. Kac, Freely generated vertex algebras and non-linear Lie conformal algebras, Comm. Math. Phys., 254 (2005), 659–694.
K. de Vos and P. van Drel, The Kazhdan–Lusztig conjecture for finite W-algebras, Lett. Math. Phys., 35 (1995), 333–344.
C. Dong, H. Li and G. Mason, Twisted representations of vertex operator algebras, Math. Ann., 310 (1998), 571–600.
V.G. Drinfeld and V.V. Sokolov, Lie algebra and the KdV type equations, Soviet J. Math., 30 (1985), 1975–2036.
A.G. Elashvili and V.G. Kac, Classification of good gradings of simple Lie algebras, Amer. Math. Soc. Transl. Ser. 2, 213 (2005), 85–104, math-ph/031203.
E. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, Amer. Math. Soc. Monogr., 88 (2001), Second edition (2004).
B.L. Feigin and E. Frenkel, Quantization of Drinfeld–Sokolov reduction, Phys. Lett. B, 246 (1990), 75–81.
B.L. Feigin and E. Frenkel, Affine Kac-Moody algebras, bosonization and resolutions, Lett. Math. Phys., 19 (1990), 307–317.
B.L. Feigin and E. Frenkel, Integrals of motions and quantum groups, Lecture Notes in Math., 1620 (1995), 349–418.
I. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approach to vertex operator algebras and modules, Mem. Amer. Math. Soc., 104 (1993)
E. Frenkel, V.G. Kac and M. Wakimoto, Characters and fusion rules for W-algebras via quantized Drinfeld-Sokolov reduction, Comm. Math. Phys., 147 (1992), 295–328.
V. Gorbunov, F. Malikov, and V. Schechtman, Gerbes of chiral differential operators II, Invent. Math., 155 (2004), 605–680.
N. Jacobson, Lie algebras, Interscience, New York, 1962.
V.G. Kac, Vertex algebras for beginners, Univ. Lecture Ser. vol 10, Amer. Math. Soc., Providence, RI (1996). Second edition (1998).
V.G. Kac and I. Todorov, Superconformal current algebras and their unitary representations, Comm. Math. Phys., 102 (1985), 337–347.
V.G. Kac, S.-S. Roan and M. Wakimoto, Quantum reduction for affine superalgebras, Comm. Math. Phys., 241 (2003), 307–342.
V.G. Kac and M.Wakimoto, Quantum reduction and representation theory of superconformal algebras, Adv. Math., 185 (2004), 400–458, Corrigendum, Adv. Math., 193 (2005), 453–455.
V.G. Kac and M.Wakimoto, Quantum reduction in the twisted case, Progr. Math., 237 (2005), 85–126.
V.G. Kac and W. Wang, Vertex operator superalgebras and their representations, Contemp. Math., 175 (1994), 161–191.
B. Kostant, A cubic Dirac operator and the emergence of Euler number multiplets of representations of equal rank subgroups, Duke Math. J., 100 (1999), 447–501.
B. Kostant and S. Sternberg, Symplectic reduction, BRS cohomology and infinite-dimensional Clifford algebras, Ann. Phys., 176 (1987), 49–113.
H. Matumoto, Whittaker modules associated with highest weight modules, Duke Math. J., 60 (1990), 59–113.
A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, preprint, 2005.
E. Ragoucy and P. Sorba, Yangian realizations from finite W-algebras, Comm. Math. Phys., 203 (1999), 551–576.
A. Severin and W. Troost, Extensions of Virasoro algebra and gauged WZW models, Phys. Lett. B, 315 (1993), 304–310.
A. Zamolodchikov, Infinite extra symmetries in two-dimensional conformal quantum field theory, Teoret. Mat. Fiz., 65 (1985), 347–359.