Finite-volume enabled transformation field analysis of periodic materials

Marcio A. A. Cavalcante1, Marek-Jerzy Pindera1
1Civil & Environmental Engineering Department, University of Viginia, Charlottesville, USA

Tóm tắt

The transformation field analysis (TFA) proposed by Dvorak et al. in a sequence of papers in the 1990s is an important conceptual cornerstone of the elastic–plastic analysis of heterogeneous materials. However, the need for highly discretized unit cells required to attain converged homogenized response using finite-element based calculation of the plastic influence matrices employed in TFA simulations has given rise to further developments, including the recent nonlinear TFA approach. This variant leverages characteristic plastic modes that arise in elastic–plastic heterogeneous materials. Herein, we re-visit the TFA approach in the context of periodic materials with large phase moduli contrast, and first quantify the unit cell discretization required to attain the same level of convergence as with full unit cell finite-element based analysis. Subsequently we demonstrate that the finite-volume based calculation of strain concentration and plastic influence matrices requires substantially smaller unit cell discretizations to achieve the same degree of macroscopic and microscopic level accuracy, resulting in large execution time reductions and fewer parameters that describe the underpinning plastic deformation mechanisms. Further reductions may be achieved by explicitly leveraging plastic field localization that assumes distinct spatial distributions or characteristic modes.

Tài liệu tham khảo

Bansal, Y., Pindera, M-J.: Efficient reformulation of the thermoelastic higher-order theory for fgms. J. Thermal Stress. 26(11–12), 1055–1092 (2003) Bansal, Y., Pindera, M-J.: A second look at the higher-order theory for periodic multiphase materials. J. Appl. Mech. 72(2), 177–195 (2005) (see also: NASA CR2004-213043) Bansal, Y., Pindera, M-J.: Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases. Int. J. Plast. 22(5), 775–825 (2006) Bensoussan, A., Lions, J-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam (1978) Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids, Series A, vol. 62. World Scientific, New Jersey (2008) Cavalcante, M.A.A., Marques, S.P.C., Pindera, M-J.: Parametric formulation of the finite-volume theory for functionally graded materials. Part I: Anal. J. Appl. Mech. 74(5), 935–945 (2007) Cavalcante, M.A.A., Khatam, H., Pindera, M-J.: Homogenization of elastic–plastic periodic materials by FVDAM and FE approaches—an assessement. Compos. Part B 42, 1713–1730 (2011) Charalambakis, N.: Homogenization techniques and micromechanics. A survey and perspectives. Appl. Mech. Rev. 63(030803), 1–10 (2010) Charalambakis, N., Murat, F.: Homogenization of stratified thermoviscoplastic materials. Q. Appl. Math. 64(2), 359–399 (2006) Demirdzic, I., Martinovic, D.: Finite volume method for thermo-elastic–plastic stress analysis. Comput. Methods Appl. Mech. Eng. 109, 331–349 (1993) Drago, A.S., Pindera, M.-J.: Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos. Sci. Technol. 67(6), 1243–1263 (2007) Dvorak, G.J.: On uniform fields in heterogeneous media. Proc. R. Soc. A431, 89–110 (1990) Dvorak, G.J.: Transformation field analysis of inelastic composite materials. Proc. R. Soc. A437, 311–327 (1992) Dvorak, G.J., Benveniste, Y.: On transformation strains and uniform fields in multiphase elastic media. Proc. R. Soc. A437, 291–310 (1992) Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A241, 376–396 (1957) Gattu, M., Khatam, H., Drago, A. S., Pindera, M-J.: Parametric finite-volume micromechanics of uniaxial, continuously-reinforced periodic materials with elastic phases. J. Eng. Mater. Technol. 130(3), 031015 (2008) Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963) Khatam, H., Pindera, M-J.: Parametric finite-volume micromechanics of periodic materials with elastoplastic phases. Int. J. Plast. 25(7), 1386–1411 (2009) Khatam, H., Chen, L., Pindera, M-J.: Elastic and plastic response of perforated plates with different porosity architectures. J. Eng. Mater. Technol. 131(3), 031014–031015 (2009) Khatam, H., Pindera, M-J.: Plastic deformation modes in perforated sheets and their relation to yield and limit surfaces. Int. J. Plast. 27(10) 1537–1559 (2011) Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002) Mendelson, A.: Plasticity: Theory and Application. Krieger Publishing Co., Malabar (1986) Michel, J.C., Suquet, P.: Nonuniform transformation field analysis. Int. J. Solids Struct. 40, 6937–6955 (2003) Michel, J.C., Suquet, P.: Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput. Methods Appl. Mech. Eng. 193, 5477–5502 (2004) Pindera, M-J., Khatam, H., Drago, A. S., Bansal, Y.: Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos. Part B 40(5), 349–378 (2009) Roussette, S., Michel, J.C., Suquet, P.: Nonuniform transformation field analysis of elastic-viscoplastic composites. Compos. Sci. Technol. 69, 22–27 (2009) Suquet, P. M.: Elements of homogenization for inelastic solid mechanics. In: Lecture Notes in Physics, vol. 272, pp. 193–278. Springer, Berlin (1987) Williams, T. O., Pindera, M-J.: An analytical model for the inelastic axial shear response of unidirectional metal matrix composites. Int. J. Plast. 13(3), 261–289 (1997) Zhong, Y., Bansal, Y., Pindera, M-J.: Efficient reformulation of the thermal higher-order theory for FGM’s with variable thermal conductivity. Int. J. Comput. Eng. Sci. 5(4), 795–831 (2004) (see also: NASA CR 2002-211910, November 2002)