Finite time blow-up for the harmonic map heat flow

Springer Science and Business Media LLC - Tập 1 - Trang 231-236 - 1993
Joseph F. Grotowski1
1Technische Hochschule Darmstadt, Fachbereich Mathematik, Darmstadt, Germany

Tóm tắt

We consider the harmonic map heat flow from the three-dimensional ball to the two-sphere. We establish the existence of regular initial data leading to blow-up in finite time.

Tài liệu tham khảo

Chang, K.-C., Ding, W.-Y., Ye, R.: Finite-time blow-up of the heat flow of harmonic maps from surfaces. J. Differ. Geom.36 507–515 (1992) Chen, Y., Ding, W.-Y.: Blow-up and global existence for heat flows of harmonic maps. Invent. Math.99, 567–578 (1990) Ding, W.-Y., Wang, G.-F.: Nonexistence of smooth axially symmetric harmonic maps fromB3 toS2. Preprint Coron, J.-M., Ghidaglia, J.-M.: Explosion en temps fini pour le flot des applications harmoniques. C. R. Acad. Sci. Paris Sér. I308, 339–344 (1989) Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc.10, 1–68 (1978) Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. Lond. Math. Soc.20, 385–524 (1988) Grayson, M., Hamilton, R.S.: The formation of singularities in the harmonic map heat flow. Preprint Grotowski, J.F.: Harmonic map heat flow for axially symmetric data. Manuscr. Math.73, 207–228 (1991) Grotowski, J.F.: Concentrated boundary data and axially symmetric harmonic maps. J. Geom. Anal. (to appear 1993) Hamilton, R.S.: Harmonic maps of manifolds with boundary. (Lect. Notes Math., vol. 471) Berlin Heidelberg New York: Springer 1975 Jost, J.: Harmonic mappings between Riemannian manifolds. Proc. Cent. Math. Anal. Aust. Natl. Univ. Canberra: Australian National University Press 1983. Zhang, D.: The existence of nonminimal regular harmonic maps from B3 toS 2. Ann. Sc. Norm. Super. Pisa Ser.IV16, 355–365 (1989)