Finite group actions on C*-algebras with the Rohlin property, I
Tóm tắt
Từ khóa
Tài liệu tham khảo
E. Kirchberg and N. C. Phillips, <i>Embedding of exact $C^*$-algebras in the Cuntz algebra $\mathcalO_2$</i>, J. Reine Angew. Math. <b>525</b> (2000), 17–53.
G. K. Pedersen, <i>$C^*$-Algebras and Their Automorphism Groups</i>, London Math. Soc. Monogr. <b>14</b>, Academic Press, London, 1979.
D. H. Bisch, <i>On the existence of central sequences in subfactors</i>, Trans. Amer. Math. Soc. <b>321</b> (1990), 117–128.
––––, <i>$K$-Theory for Operator Algebras</i>, 2nd ed., Math. Sci. Res. Inst. Publ. <b>5</b>, Cambridge Univ. Press, Cambridge, 1998.
––––, talk at the Fields Institute, Waterloo, Canada, December 1994.
B. Blackadar, A. Kumjian, and M. Rørdam, <i>Approximately central matrix units and the structure of noncommutative tori</i>, $K$-Theory <b>6</b> (1992), 267–284.
O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto, “On the classification of inductive limits of inner actions of a compact group” in <i>Current Topics in Operator Algebras (Nara, Japan, 1990)</i>, World Sci., River Edge, N.J., 1991, 13–24.
O. Bratteli and A. Kishimoto, <i>Trace scaling automorphisms of certain stable AF algebras, II</i>, Q. J. Math. <b>51</b> (2000), 131–154.
O. Bratteli, E. Størmer, A. Kishimoto, and M. Rørdam, <i>The crossed product of a UHF algebra by a shift</i>, Ergodic Theory Dynam. Systems <b>13</b> (1993), 615–626.
L. G. Brown, <i>Semicontinuity and multipliers of $C^*$-algebras</i>, Canad. J. Math. <b>40</b> (1988), 865–988.
A. Connes, <i>Outer conjugacy classes of automorphisms of factors</i>, Ann. Sci. École Norm. Sup. (4) <b>8</b> (1975), 383–419.
–. –. –. –., <i>Periodic automorphisms of the hyperfinite factor of type $\mathrmII_1$</i>, Acta Sci. Math. (Szeged) <b>39</b> (1977), 39–66.
–. –. –. –., <i>An analogue of the Thom isomorphism for crossed products of a $C^*$-algebra by an action of $\mathbbR$</i>, Adv. in Math. <b>39</b> (1981), 31–55.
J. Cuntz, <i>Simple $C^*$-algebras generated by isometries</i>, Comm. Math. Phys. <b>57</b> (1977), 173–185.
–. –. –. –., <i>$K$-theory for certain $C^*$-algebras</i>, Ann. of Math. (2) <b>113</b> (1981), 181–197.
J. Cuntz and D. E. Evans, <i>Some remarks on the $C^*$-algebras associated with certain topological Markov chains</i>, Math. Scand. <b>48</b> (1981), 235–240.
J. Cuntz and W. Krieger, <i>A class of $C^*$-algebras and topological Markov chains</i>, Invent. Math. <b>56</b> (1980), 251–268. \MR0561974
E. G. Effros, <i>Dimensions and $C^*$-Algebras</i>, CBMS Reg. Conf. Ser. Math. <b>46</b>, Conf. Board Math. Sci., Washington, D.C., 1981.
G. A. Elliott, <i>On the classification of $C^*$-algebras of real rank zero</i>, J. Reine Angew. Math. <b>443</b> (1993), 179–219.
G. A. Elliott and M. Rørdam, <i>Classification of certain infinite simple $C^*$-algebras, II</i>, Comment. Math. Helv. <b>70</b> (1995), 615–638.
G. A. Elliott and H. Su, <i>$K$-theoretic classification for inductive limit $Z_2$ actions on AF algebras</i>, Canad. J. Math. <b>48</b> (1996), 946–958.
D. E. Evans and A. Kishimoto, <i>Trace scaling automorphisms of certain stable AF algebras</i>, Hokkaido Math. J. <b>26</b> (1997), 211–224.
D. E. Evans and H. Su, <i>$K$-theoretic classification for certain $\mathbbZ_2$ actions on inductive limits of Cuntz algebras</i>, preprint, 1993.
Th. Fack and O. Maréchal, <i>Sur la classification des symétries des $C^*$-algèbres UHF</i>, Canad. J. Math. <b>31</b> (1979), 496–523.
–. –. –. –., <i>Sur la classification des automorphismes périodiques des $C^*$-algèbres UHF</i>, J. Funct. Anal. <b>40</b> (1981), 267–301.
P. Goldstein, <i>Classification on canonical $Z_2$-actions on $\mathcalO_\infty$</i>, preprint.
––––, <i>$K$-theoretic classification of canonical $Z_2$-actions on Cuntz-Krieger algebras</i>, preprint.
D. Handelman and W. Rossmann, <i>Product type actions of finite and compact groups</i>, Indiana Univ. Math. J. <b>33</b> (1984), 479–509.
–. –. –. –., <i>Actions of compact groups on AF $C^*$-algebras</i>, Illinois J. Math. <b>29</b> (1985), 51–95.
R. H. Herman and V. F. R. Jones, <i>Period two automorphisms of $\mathrmUHF$ $C^*$-algebras</i>, J. Funct. Anal. <b>45</b> (1982), 169–176.
R. H. Herman and A. Ocneanu, <i>Stability for integer actions on UHF $C^*$-algebras</i>, J. Funct. Anal. <b>59</b> (1984), 132–144.
S. Imai and H. Takai, <i>On a duality for $C^*$-crossed products by a locally compact group</i>, J. Math. Soc. Japan <b>30</b> (1978), 495–504.
M. Izumi, “The Rohlin property for automorphisms of $C^*$-algebras” in <i>Mathematical Physics in Mathematics and Physics (Siena, Italy, 2000)</i>, Fields Inst. Commun. <b>30</b>, Amer. Math. Soc., Providence, 2001, 191–206.
–. –. –. –., <i>Inclusions of simple $C^*$-algebras</i>, J. Reine Angew. Math. <b>547</b> (2002), 97–138.
J. A. Jeong, K. Kodaka, and H. Osaka, <i>Purely infinite simple $C^*$-crossed products, II</i>, Canad. Math. Bull. <b>39</b> (1996), 203–210.
V. F. R. Jones, <i>Actions of finite groups on the hyperfinite type $\rm II\sb1$ factor</i>, Mem. Amer. Math. Soc. <b>28</b> (1980), no. 237.
E. Kirchberg, <i>The classification of purely infinite $C^*$-algebras using Kasparov's theory</i>, preprint, 1994, to appear in Fields Inst. Commun.
A. Kishimoto, <i>On the fixed point algebra of a UHF algebra under a periodic automorphism of product type</i>, Publ. Res. Inst. Math. Sci. <b>13</b> (1977/78), 777–791.
–. –. –. –., <i>Actions of finite groups on certain inductive limit $C^*$-algebras</i>, Internat. J. Math. <b>1</b> (1990), 267–292.
–. –. –. –., <i>Automorphisms of $\mathrmA\mathbfT$ algebras with the Rohlin property</i>, J. Operator Theory <b>40</b> (1998), 277–294.
–. –. –. –., <i>Unbounded derivations in AT algebras</i>, J. Funct. Anal. <b>160</b> (1998), 270–311.
A. Kishimoto and A. Kumjian, “Crossed products of Cuntz algebras by quasi-free automorphisms” in <i>Operator Algebras and Their Applications (Waterloo, Ontario, Canada, 1994/1995)</i>, Fields Inst. Commun. <b>13</b>, Amer. Math. Soc., Providence, 1997, 173–192.
H. Lin, <i>An Introduction to the Classification of Amenable $C^*$-Algebras</i>, World Sci., River Edge, N.J., 2001.
M. H. Mann, I. Raeburn, and C. E. Sutherland, <i>Representations of finite groups and Cuntz-Krieger algebras</i>, Bull. Austral. Math. Soc. <b>46</b> (1992), 225–243.
D. McDuff, <i>Central sequences and the hyperfinite factor</i>, Proc. London Math. Soc. (3) <b>21</b> (1970), 443–461.
Y. Nakagami and M. Takesaki, <i>Duality for Crossed Products of von Neumann Algebras</i>, Lecture Notes in Math. <b>731</b>, Springer, Berlin, 1979.
H. Nakamura, <i>Aperiodic automorphisms of nuclear purely infinite simple $C^*$-algebras</i>, Ergodic Theory Dynam. Systems <b>20</b> (2000), 1749 –1765.
A. Ocneanu, <i>Actions of Discrete Amenable Groups on von Neumann Algebras</i>, Lecture Notes in Math. <b>1138</b>, Springer, Berlin, 1985.
N. C. Phillips, <i>A classification theorem for nuclear purely infinite simple $C^*$-algebras</i>, Doc. Math. <b>5</b> (2000), 49–114.
M. Pimsner and D. Voiculescu, <i>Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^*$-algebras</i>, J. Operator Theory <b>4</b> (1980), 93–118.
M. Rørdam, <i>Classification of inductive limits of Cuntz algebras</i>, J. Reine Angew. Math. <b>440</b> (1993), 175–200.
M. Rørdam and E. Størmer, <i>Classification of Nuclear $C^*$-algebras: Entropy in Operator Algebras</i>, Encyclopaedia Math. Sci. <b>126</b>, Operator Algebras and Non-commutative Geometry <b>7</b>, Springer, Berlin, 2001.
J. Rosenberg and C. Schochet, <i>The Künneth theorem and the universal coefficient theorem for Kasparov's generalized $K$-functor</i>, Duke Math. J. <b>55</b> (1987), 431–474.
C. Schochet, <i>Topological methods for $C^*$-algebras, II: Geometry resolutions and the Künneth formula</i>, Pacific J. Math. <b>98</b> (1982), 443–458.
–. –. –. –., <i>Topological methods for $C^*$-algebras, IV: Mod $p$ homology</i>, Pacific J. Math. <b>114</b> (1984), 447–468.
H. Su, <i>$K$-theoretic classification for certain inductive limit $\mathbbZ_2$ actions on real rank zero $C^*$-algebras</i>, Trans. Amer. Math. Soc. <b>348</b> (1996), 4199–4230.
C. E. Sutherland, <i>Cohomology and extensions of von Neumann algebras, II</i>, Publ. Res. Inst. Math. Sci. <b>16</b> (1980), 135–174.