Finite element modelling of hardening concrete: application to the prediction of early age cracking for massive reinforced structures

Matériaux et constructions - Tập 44 - Trang 1821-1835 - 2011
Laurie Buffo-Lacarrière1,2, Alain Sellier1, Anaclet Turatsinze1, Gilles Escadeillas1
1Université de Toulouse, UPS, INSA, Laboratoire Matériaux et Durabilité des Constructions (LMDC), Toulouse Cedex 04, France
2VINCI Construction Grands Projets, Rueil-Malmaison Cedex, France

Tóm tắt

This article presents finite element modelling to predict the early age cracking risk of concrete structures. It is a tool to help practitioners choose materials and construction techniques to reduce the risk of cracking. The proposed model uses original hydration modelling (allowing composed binder to be modelled and hydric consumption to be controlled) followed by a non-linear mechanical model of concrete at early ages involving creep and damage coupling. The article considers hydration effects on this mechanical model, which is based on a non-linear viscoelastic formulation combined with an anisotropic, regularized damage model. Details of the numerical implementation are given in the article and the model is applied successively to a laboratory structure and to a massive structure in situ (experimental wall of a nuclear power plant studied in the framework of the French national research project CEOS.fr).

Tài liệu tham khảo

Acker P, Ulm F-J (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203:143–158 Bažant ZP, Prasannan S (1989) Solidification theory for concrete creep I. Formulation. J Eng Mech 115(8):1691–1703 Benboudjema F, Torrenti J-M (2006) Early age behaviour of concrete nuclear containments. In: 2nd edition of the international symposium on advances in concrete through science and engineering, RILEM Publication PRO 51, Quebec Benboudjema F, Torrenti JM (2008) Early age behaviour of concrete nuclear containments. Nucl Eng Des 238(10):2495–2506 Bentz DP (2000) CEMHYD3D: a three-dimensional cement hydration and microstructure development modelling package. Version 2.0. NISTIR 6485, U.S. Department of Commerce, Washington, April 2000 Bernard O, Ulm F-J, Lemarchand E (2003) A multiscale micromechanics-hydration model fir the early age elastic properties of cement-based materials. Cem Concr Res 33:1293–1309 Bjøntegaard Ø, Sellevold EJ (1998) Thermal dilatation—autogenous shrinkage: how to separate? In: Autogenous shrinkage of concrete: proceedings of the international workshop of Hiroshima, Hiroshima, Japan, June 1998 Brooks JJ (2005) 30-Year creep and shrinkage of concrete. Mag Concr Res 57(9):545–556 Buffo-Lacarrière L, Sellier A (2009) Behaviour of HPC nuclear waste storage structures in leaching environment. In: Concrete in aggressive aqueous environments, RILEM TC 211-PAE final conference, Toulouse, France, 3–5 June 2009 Buffo-Lacarrière L, Sellier A, Escadeillas G, Turatsinze A (2007) Multiphasic finite element modelling of concrete hydration. Cem Concr Res 37(2):131–138 Cast3M (2005) CEA—DEN/DM2S/SEMT. http://www-cast3m.cea.fr/cast3m/index.jsp De Schutter G (2002) Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws. Comput Struct 80:2035–2042 Eierle B, Schikora K (1999) Computational modelling of concrete at early ages using DIANA. In: Diana-World 1999, issue 2. http://www.bst.bv.tum.de/pdf/diana.pdf François D, Pineau A, Zaoui A (1991) Comportement mécanique des matériaux, vol 1. Hermès, Paris, ISSN 0986-4873 Gutsch A, Rostásy FS (1994) Young concrete under high tensile stresses—creep, relaxation and cracking. In: Thermal cracking at early ages, Rilem proceeding 25. Munich, Deutschland, ISBN 0-419-187103, pp. 111–119 Hauggaard AB, Damkilde L, Hansen PF (1999) Transitional thermal creep of early age concrete. J Eng Mech 125(4):458–465 Hillerborg A, Modeer M, Petersson PE (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782 Ishikawa Y, Kunieda M, Srisoros W, Tanabe T (2005) Constitutive law based on solidification. In: Creep, shrinkage and durability of concrete and concrete structures (CONCREEP 7), Ecole Centrale de Nantes, Nantes, 12–14 September 2005 Kachanov LM (1986) Introduction to continuum damage mechanics. Martinus Nijhoff, Dordrecht. ISBN 90-247-3319-7 Lackner R, Mang HA (2004) Chemoplastic material model for the simulation of early-age cracking: from the constitutive law to numerical analyses of massive concrete structures. Cem Concr Compos 26:551–562 Laplante P, Boulay C (1994) Evolution du coefficient de dilatation thermique du béton en fonction de sa maturité aux tout premiers ages. Mater Struct 27:596–605 (in French) Laube M (1990) Werkstoffmodell zur Berechnung von Temperaturspannungen in massigen Betonbauteilen im jungen Alter. Dissertation TU Braunschweig Mabrouk R, Ishida T, Maekawa K (2004) A unified solidification model of hardening concrete composite for predicting the young age behavior of concrete. Cem Concr Compos 26:453–461 Onken P, Rostásy F (1995) Wirksame Betonzugfestigkeit im Bauwerk bei früh einsetzendem Temperaturzwang. DAfStb Heft 449. Beuth-Verlag, Berlin Sanahuja J, Dormieux L, Chanvillard G (2007) Modelling elasticity of a hydrating cement paste. Cem Concr Res 37:1427–1439 Sellier A, Bary B (2002) Coupled damage tensors and weakest link theory for the description of crack induced anisotropy in concrete. Eng Fract Mech 69:1925–1939 Sellier A, Buffo-Lacarriere L (2009) Toward a simple and unified modelling of basic creep, shrinkage and drying creep for concrete. Eur J Environ Civil Eng 13(10):1161–1182 Smilauer V, Bittnar Z (2006) Microstructure-based micromechanical prediction of elastic properties in hydrating cement paste. Cem Concr Res 36(9):1708–1718 Stefan L, Benboudjema F, Torrenti J-M, Bissonnette B (2010) Prediction of elastic properties of cement pastes at early ages. Comput Mater Sci 47(3):775–784 Torrenti J-M, Bendoudjema F (2005) Mechanical threshold of cementitious materials at early age. Mater Struct 38(277):299–304 Ulm F-J, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31–32):4295–4311 Van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials. Cem Concr Res 25(2):319–331 Waller V, D’Aloïa L, Cussigh F, Lecrux S (2004) Using the maturity method in concrete cracking control at early ages. Cem Concr Compos 26:589–599 Yang Q-S, Li C-J (2006) Evolution of properties in hydration of cements: a numerical study. Mech Res Commun 33:717–727