Finite element discretization of a nonlinear thermoelastic beam model with penalized unilateral contact

Springer Science and Business Media LLC - Tập 64 - Trang 41-64 - 2014
Christine Bernardi1, Maria Inês M. Copetti2
1Laboratoire Jacques-Louis Lions, C.N.R.S. and Université Pierre et Marie Curie, Paris Cedex 05, France
2LANA Departamento de Matemática, Universidade Federal de Santa Maria, Santa Maria, Brasil

Tóm tắt

We consider the steady case of a nonlinear model for a thermoelastic beam that can enter in contact with obstacles via a penalization term. We first prove the well-posedness of this problem. Next, we propose a finite element discretization and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach.

Tài liệu tham khảo

Ahn, J., Stewart, D.E.: A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete Continuous Dyn. Syst. Ser. B 12, 1–22 (2009) Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problèmes Aux Limites Elliptiques, Collection Mathématiques et Applications, vol. 45. Springer-Verlag, Berlin (2004) Copetti, M.I.M.: A numerical method for a nonlinear system of integro-differential equations arising in thermoviscoelasticity. Comp. Methods Appl. Mech. Eng. 196, 1085–1094 (2007) Copetti, M.I.M., Fernández, J.R.: Finite element approximation to a contact problem for a nonlinear thermoviscoelastic beam. J. Math Anal. Appl. 383, 506–521 (2011) El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200, 2782–2795 (2011) Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986) Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988) Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modelling of dynamic networks of thin thermoelastic beams. Math. Meth. Appl. Sci. 16, 327–358 (1993) Ma, T.F.: Existence results and numerical solutions for a beam equation with nonlinear boundary conditions. Appl. Numer. Math. 47, 189–196 (2003) Peradze, J.: A numerical algorithm for a Kirchhoff-type nonlinear static beam. J. Appl. Math. 2009, 1–12 (2009) Sapir, M.H., Reiss, E.L.: Dynamic buckling of a nonlinear Timoshenko beam. SIAM J. Appl. Math. 37, 290–301 (1979) Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013) Zelati, M.C., Giorgi, C., Pata, V.: Steady states of the hinged extensible beam with external load. Math. Models. Meth. Appl. Sci. 20, 43–58 (2010)