Finite element discretization of a nonlinear thermoelastic beam model with penalized unilateral contact
Tóm tắt
We consider the steady case of a nonlinear model for a thermoelastic beam that can enter in contact with obstacles via a penalization term. We first prove the well-posedness of this problem. Next, we propose a finite element discretization and perform the a priori and a posteriori analysis of the discrete problem. Some numerical experiments confirm the interest of this approach.
Tài liệu tham khảo
Ahn, J., Stewart, D.E.: A viscoelastic Timoshenko beam with dynamic frictionless impact. Discrete Continuous Dyn. Syst. Ser. B 12, 1–22 (2009)
Bernardi, C., Maday, Y., Rapetti, F.: Discrétisations Variationnelles de Problèmes Aux Limites Elliptiques, Collection Mathématiques et Applications, vol. 45. Springer-Verlag, Berlin (2004)
Copetti, M.I.M.: A numerical method for a nonlinear system of integro-differential equations arising in thermoviscoelasticity. Comp. Methods Appl. Mech. Eng. 196, 1085–1094 (2007)
Copetti, M.I.M., Fernández, J.R.: Finite element approximation to a contact problem for a nonlinear thermoviscoelastic beam. J. Math Anal. Appl. 383, 506–521 (2011)
El Alaoui, L., Ern, A., Vohralík, M.: Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems. Comput. Methods Appl. Mech. Eng. 200, 2782–2795 (2011)
Girault, V., Raviart, P.-A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986)
Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988)
Lagnese, J.E., Leugering, G., Schmidt, E.J.P.G.: Modelling of dynamic networks of thin thermoelastic beams. Math. Meth. Appl. Sci. 16, 327–358 (1993)
Ma, T.F.: Existence results and numerical solutions for a beam equation with nonlinear boundary conditions. Appl. Numer. Math. 47, 189–196 (2003)
Peradze, J.: A numerical algorithm for a Kirchhoff-type nonlinear static beam. J. Appl. Math. 2009, 1–12 (2009)
Sapir, M.H., Reiss, E.L.: Dynamic buckling of a nonlinear Timoshenko beam. SIAM J. Appl. Math. 37, 290–301 (1979)
Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Oxford University Press, Oxford (2013)
Zelati, M.C., Giorgi, C., Pata, V.: Steady states of the hinged extensible beam with external load. Math. Models. Meth. Appl. Sci. 20, 43–58 (2010)