Finite-difference proof of the completeness of eigenfunctions of the Sturm-Liouville operator in conservative form

Pleiades Publishing Ltd - Tập 55 - Trang 1-7 - 2015
A. R. Aliev1,2, E. H. Eyvazov1
1Faculty of Applied Mathematics and Cybernetics, Baku State University, Baku, Azerbaijan
2Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan

Tóm tắt

A finite-difference method is used to prove the completeness of the eigenfunctions of the Sturm-Liouville operator in conservative form. The finite-difference schemes corresponding to the conservative Sturm-Liouville equation with various boundary conditions are shown to be self-adjoint. The accuracy and convergence of the method are analyzed, and the properties of eigenvalues and eigenvectors of the difference scheme approximating the differential equation and the boundary conditions are examined.

Tài liệu tham khảo

V. E. Zaliznyak, Fundamentals of Computational Physics, Part 1: Introduction to Finite-Difference Methods (Tekhnosfera, Moscow, 2008) [in Russian]. V. G. Zverev, “A special difference scheme for boundary value problems in heat and mass transfer,” Comput. Math. Math. Phys. 43(2), 255–267 (2003). A. A. Kurkin, Nonlinear and Nonstationary Dynamics of Long Waves in the Coastal Zone (Nizhegorod. Gos. Tekh. Univ., Nizhni Novgorod, 2005) [in Russian]. A. A. Samarskii, The Theory of Difference Schemes (Nauka, Moscow, 1989; Marcel Dekker, New York, 2001). B. N. Chetverushkin, Mathematical Simulation of Radiating Gas Dynamics (Nauka, Moscow, 1985) [in Russian]. Tien-Mo Shih, Numerical Heat Transfer (Hemisphere, Washington, 1984; Mir, Moscow, 1988). N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobel’kov, Numerical Methods (Binom, Moscow, 2007) [in Russian]. M. K. Kerimov, “Approximate computation of eigenvalues and eigenfunctions of Sturm-Liouville differential operators by applying the theory of regularized traces,” Comput. Math. Math. Phys. 52(3), 351–386 (2012). M. O. Otelbaev, “Coercive estimates for solutions of difference equations,” Proc. Steklov Inst. Math. 181, 265–274 (1988). J. D. Pryce, Numerical Solution of Sturm-Liouville Problems (Clarendon, Oxford, 1993). R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-Value Problems (Wiley, New York, 1967; Mir, Moscow, 1972). A. A. Samarskii and A. V. Gulin, Numerical Methods of Mathematical Physics (Nauchnyi Mir, Moscow, 2003) [in Russian]. M. Plancherel, “Le passage à la limite des équations aux différences aux équations différentielles dans les problèmes aux limites,” Bull. Sci. Math. (Darboux Bull.) 47, 153–160 (1923). M. Plancherel, “Le passage à la limite des équations aux différences aux équations différentielles dans les problèmes aux limites,” Bull. Sci. Math. (Darboux Bull.) 47, 170–177 (1923). V. A. Steklov, “Expansion of a given function in a series relative to harmonic functions,” Soobshch. Mat. Ob-va Kharkov 6(2), 57–124 (1896). N. N. Krulikovskii, Directions of the Development of Spectral Theory of Ordinary Differential Equations (Tomsk. Gos. Univ., Tomsk, 2008) [in Russian]. B. M. Levitan, Eigenfunction Expansions for Second-Order Differential Equations (Gostekhizdat, Moscow, 1950) [in Russian]. E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations (Clarendon, Oxford, 1946; Inostrannaya Literatura, Moscow, 1960).