Finite-difference method for modeling the surface wave propagation with surface topography in anisotropic-viscoelastic media

Journal of Applied Geophysics - Tập 217 - Trang 105161 - 2023
Xuhui Zhou1,2,3, Shoudong Huo1,2,3, Yao Liang4, Shuli Dong1,2,3
1Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, 100029 Beijing, China
2Institutions of Earth Science, Chinese Academy of Sciences, 100029 Beijing, China
3University of Chinese Academy of Sciences, 100049 Beijing, China
4Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China

Tài liệu tham khảo

Aki, 2002 Anderson, 1961, Elastic wave propagation in layered anisotropic media, J. Geophys. Res., 9, 2953, 10.1029/JZ066i009p02953 Bohlen, 2006, Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves, Geophysics, 4, T109, 10.1190/1.2213051 Bortfeld, 2009 Cao, 2018, A parameter-modified method for implementing surface topography in elastic-wave finite-difference modeling, Geophysics, 6, T313, 10.1190/geo2018-0098.1 Cao, 2018, An adaptive free-surface expression for three-dimensional finite-difference frequency-domain modelling of elastic wave, Geophys. Prospect., 4, 707, 10.1111/1365-2478.12618 Cao, 2022, 3-D multiparameter full-waveform inversion for ocean-bottom seismic data using an efficient fluid-solid coupled spectral-element solver, Geophys. J. Int., 1, 671, 10.1093/gji/ggab484 Carcione, 1992, Rayleigh-waves in isotropic viscoelastic media, Geophys. J. Int., 2, 453, 10.1111/j.1365-246X.1992.tb04628.x Carcione, 1995, Constitutive model and wave-equations for linear, viscoelastic, anisotropic media, Geophysics, 2, 537, 10.1190/1.1443791 Carcione, 2001 Carcione, 2014 Carcione, 1988, Wave-propagation simulation in a linear viscoelastic medium, Geophys. J. Oxford, 3, 597, 10.1111/j.1365-246X.1988.tb06706.x Chang, 1995, Experimental-observation of surface-wave propagation for a transversely isotropic medium, Geophysics, 1, 185, 10.1190/1.1443745 Day, 1984, Numerical-simulation of attenuated wavefields using a pade approximant method, Geophys. J. R. Astron. Soc., 1, 105, 10.1111/j.1365-246X.1984.tb06474.x De Basabe, 2015, A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface, Geophys. J. Int., 1, 278, 10.1093/gji/ggu389 de la Puente, 2014, Mimetic seismic wave modeling including topography on deformed staggered grids, Geophysics, 3, T125, 10.1190/geo2013-0371.1 Dong, 2021, Viscoelastic wave finite-difference modeling in the presence of topography with adaptive free-surface boundary condition, Acta Geophys., 6, 2205, 10.1007/s11600-021-00666-7 Drainville, 2019, Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations, J. Acoust. Soc. Am., 6, 4382, 10.1121/1.5139221 Emmerich, 1987, Incorporation of attenuation into time-domain computations of seismic-wave fields, Geophysics, 9, 1252, 10.1190/1.1442386 Gao, 2020, 2-D multiparameter viscoelastic shallow-seismic full-waveform inversion: reconstruction tests and first field-data application, Geophys. J. Int., 1, 560, 10.1093/gji/ggaa198 Gassmann, 1951, Elastic waves through a packing of spheres, Geophysics, 4, 673, 10.1190/1.1437718 Groos, 2017, Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves, Geophysics, 2, R109, 10.1190/geo2016-0284.1 Hestholm, 1994, 2D finite-difference elastic-wave modeling including surface-topography, Geophys. Prospect., 5, 371, 10.1111/j.1365-2478.1994.tb00216.x Kamath, 2021, Multiparameter full-waveform inversion of 3D ocean-bottom cable data from the Valhall field, Geophysics, 1, B15, 10.1190/geo2019-0705.1 Kohn, 2016, Application of 2D elastic Rayleigh waveform inversion to ultrasonic laboratory and field data, Near Surface Geophy., 5, 461, 10.3997/1873-0604.2016027 Komatitsch, 2007, An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation, Geophysics, 5, SM155, 10.1190/1.2757586 Komatitsch, 1999, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 3, 806, 10.1046/j.1365-246x.1999.00967.x Komatitsch, 1998, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures, Bull. Seismol. Soc. Am., 2, 368, 10.1785/BSSA0880020368 Komatitsch, 2000, Simulation of anisotropic wave propagation based upon a spectral element method, Geophysics, 4, 1251, 10.1190/1.1444816 Komatitsch, 2016, Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion, Geophys. J. Int., 3, 1467, 10.1093/gji/ggw224 Konuk, 2020, Modeling full-wavefield time-varying sea-surface effects on seismic data: a mimetic finite-difference approach, Geophysics, 2, T45, 10.1190/geo2019-0181.1 Konuk, 2021, Tensorial elastodynamics for anisotropic media, Geophysics, 1 Lai, 2002, Simultaneous measurement and inversion of surface wave dispersion and attenuation curves, Soil Dyn. Earthq. Eng., 9-12, 923, 10.1016/S0267-7261(02)00116-1 Lan, 2011, Three-dimensional wave-field simulation in heterogeneous transversely isotropic medium with irregular free surface, Bull. Seismol. Soc. Am., 3, 1354, 10.1785/0120100194 Levander, 1988, 4th-order finite-difference P-SV seismograms, Geophysics, 11, 1425, 10.1190/1.1442422 Li, 2017, Time-space-domain mesh-free finite difference based on least squares for 2D acoustic-wave modeling, Geophysics, 4, T143, 10.1190/geo2016-0464.1 Li, 2017, Wave-equation dispersion inversion, Geophys. J. Int., 3, 1567, 10.1093/gji/ggw465 Li, X., Yao, G., Niu, F., Wu, D., 2020. An immersed boundary method with iterative symmetric interpolation for irregular surface topography in seismic wavefield modelling. J. Geophys. Eng. 4, 643-660. doi:10.1093/jge/gxaa019. Li, 2022, Waveform inversion of seismic first arrivals acquired on irregular surface, Geophysics, 3, R291, 10.1190/geo2021-0097.1 Liu, 1976, Velocity dispersion due to anelasticity - implications for seismology and mantle composition, Geophys. J. R. Astron. Soc., 1, 41, 10.1111/j.1365-246X.1976.tb01261.x Liu, 2019, 3D wave-equation dispersion inversion of Rayleigh waves, Geophysics, 5, R673, 10.1190/geo2018-0543.1 Mittet, 2002, Free-surface boundary conditions for elastic staggered-grid modeling schemes, Geophysics, 5, 1616, 10.1190/1.1512752 Moczo, 2002, 3D heterogeneous staggered-grid finite-difference modeling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seismol. Soc. Am., 8, 3042, 10.1785/0120010167 Pan, 2019, High-resolution characterization of near-surface structures by surface-wave inversions: from dispersion curve to full waveform, Surv. Geophys., 2, 167, 10.1007/s10712-019-09508-0 Park, 1999, Multichannel analysis of surface waves, Geophysics, 3, 800, 10.1190/1.1444590 Petersson, 2015, Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method, J. Computat. Phys., 820, 10.1016/j.jcp.2015.07.023 Qu, 2019, Q-compensated reverse time migration in viscoacoustic media including surface topography, Geophysics, 4, S201, 10.1190/geo2018-0313.1 Qu, 2017, A hybrid grid method in an auxiliary coordinate system for irregular fluid-solid interface modelling, Geophys. J. Int., 3, 1540, 10.1093/gji/ggw429 Qu, 2019, Q-compensated reverse time migration in viscoacoustic medium including surface topography, 22 Qu, 2020, Fluid-solid coupled full-waveform inversion in the curvilinear coordinates for ocean-bottom cable data, Geophysics, 3, R113, 10.1190/geo2018-0743.1 Qu, 2023, Joint acoustic and decoupled-elastic least-squares reverse time migration for simultaneously using water-land dual-detector data, IEEE Trans. Geosci. Remote Sens., 10.1109/TGRS.2023.3270930 Robertsson, 1996, A numerical free-surface condition for elastic/viscoelastic finite-difference modeling in the presence of topography, Geophysics, 6, 1921, 10.1190/1.1444107 Robertsson, 1994, Viscoelastic finite-difference modeling, Geophysics, 9, 1444, 10.1190/1.1443701 Sánchez-Galvis, 2021, Simulation of scattered seismic surface waves on mountainous onshore areas: understanding the “ground roll energy cone”, Lead. Edge, 8, 40 Shragge, 2005, Wave-equation migration from topography Socco, 2010, Surface-wave analysis for building near-surface velocity models - established approaches and new perspectives, Geophysics, 5, A83 Stork, 2020, How does the thin near surface of the earth produce 10–100 times more noise on land seismic data than on marine data?, First Break, 8, 67, 10.3997/1365-2397.fb2020062 Sun, 2018, 3D seismic wavefield modeling in generally anisotropic media with a topographic free surface by the curvilinear grid finite-difference method, Bull. Seismol. Soc. Am., 3A, 1287, 10.1785/0120170154 Sun, 2021, 3D seismic-wave modeling with a topographic fluid-solid interface at the sea bottom by the curvilinear-grid finite-difference method, Bull. Seismol. Soc. Am., 5, 2753, 10.1785/0120200363 Takekawa, 2015, A mesh-free method with arbitrary-order accuracy for acoustic wave propagation, Comput. Geosci., May, 15, 10.1016/j.cageo.2015.02.006 Tao, 2023, Multi-parameter full waveform inversion using only the streamer data based on the acoustic-elastic coupled wave equation, J. Appl. Geophys., 10.1016/j.jappgeo.2022.104902 Tessmer, 1994, 3-d elastic modeling with surface-topography by a Chebyshev spectral method, Geophysics, 3, 464, 10.1190/1.1443608 Tessmer, 1992, Elastic wave propagation simulation in the presence of surface topography, Geophys. J. Int., 2 Thomsen, 1986, Weak elastic-anisotropy, Geophysics, 10, 1954, 10.1190/1.1442051 Tromp J, Komatitsch D, Liu QY (2008) Spectral-element and adjoint methods in seismology. Commun. Computat. Phys.1:1–32. <Go to ISI>://WOS:000252368000002. Virieux, 1986, P-SV wave propagation in heterogeneous media velocity-stress finite-difference method, Geophysics, 4, 889, 10.1190/1.1442147 White, 1953, Velocity measurements in near-surface formations, Geophysics, 1, 54, 10.1190/1.1437863 Xia, 1999, Estimation of near-surface shear-wave velocity by inversion of Rayleigh waves, Geophysics, 3, 691, 10.1190/1.1444578 Xia, 2012, Estimation of near-surface quality factors by constrained inversion of Rayleigh-wave attenuation coefficients, J. Appl. Geophys., 137, 10.1016/j.jappgeo.2012.03.003 Xie, 2014, Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML, Geophys. J. Int., 3, 1714, 10.1093/gji/ggu219 Xu, 2007, Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach, Geophysics, 5, SM147, 10.1190/1.2753831 Zahradnik, 1993, Testing 4 elastic finite-difference schemes for behavior at discontinuities, Bull. Seismol. Soc. Am., 1, 107 Zeng, 2012, An improved vacuum formulation for 2D finite-difference modeling of Rayleigh waves including surface topography and internal discontinuities, Geophysics, 1, T1, 10.1190/geo2011-0067.1 Zhang, 2009, Dispersion splitting of Rayleigh waves in layered azimuthally anisotropic media, J. Appl. Geophys., 2, 130, 10.1016/j.jappgeo.2008.10.008 Zhang, 2011, Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media, Soil Dyn. Earthq. Eng., 10, 1332, 10.1016/j.soildyn.2011.05.004 Zhang, 2012, Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids, Geophys. J. Int., 1, 358, 10.1111/j.1365-246X.2012.05472.x Zheng, 2023, Finite difference method for first-order velocity-stress equation in body-fitted coordinate system, IEEE Trans. Geosci. Remote Sensing, 1 Zhou, 2009, Surface-wave sensitivity to 3-D anelasticity, Geophys. J. Int., 3, 1403, 10.1111/j.1365-246X.2009.04230.x