Các Nhóm Hữu Hạn Với Một Hệ Thống Các Nhóm Con Schmidt Phân Nhánh Tổng Quát

Springer Science and Business Media LLC - Tập 64 - Trang 76-82 - 2023
X. Yi1, M. Li1, S. F. Kamornikov2
1Zhejiang Sci-Tech University, Hangzhou, China
2F. Skorina Gomel’ State University, Gomel’, Belarus

Tóm tắt

Được cấp phát một sự phân tách $ \sigma $ của tập hợp tất cả các số nguyên tố, chúng tôi nghiên cứu cấu trúc của một nhóm hữu hạn với một hệ thống cho trước các nhóm con Schmidt $ \sigma $-phân nhánh.

Từ khóa


Tài liệu tham khảo

The Kourovka Notebook: Unsolved Problems in Group Theory. 19th ed., Khukhro E.I. and Mazurov V.D. (eds.), Sobolev Inst. Math., Novosibirsk (2018). Guo W., Safonova I.N., and Skiba A.N., “On \( \sigma \)-subnormal subgroups of finite groups,” Southeast Asian Bull. Math., vol. 45, no. 6, 813–824 (2021). Skiba A.N., “On \( \sigma \)-subnormal and \( \sigma \)-permutable subgroups of finite groups,” J. Algebra, vol. 436, 1–16 (2015). Arad Z. and Chillag D., “A criterion for the existence of normal \( \pi \)-complements in finite groups,” J. Algebra, vol. 87, 472–482 (1984). Vedernikov V.A., “On \( \pi \)-properties of finite groups,” in: Arithmetic and Subgroup Structure of Finite Groups, Nauka i Tekhnika, Minsk (1986), 13–19 [Russian]. Knyagina V.N. and Monakhov V.S., “Finite groups with subnormal Schmidt subgroups,” Sib. Math. J., vol. 45, no. 6, 1075–1079 (2004). Vedernikov V.A., “Finite groups with subnormal Schmidt subgroups,” Algebra Logic, vol. 46, no. 6, 363–372 (2007). Al-Sharo K.A. and Skiba A.N., “On finite groups with \( \sigma \)-subnormal Schmidt subgroups,” Comm. Algebra, vol. 45, no. 10, 3117–3134 (2017). Hu B. and Huang J., “On finite groups with generalized \( \sigma \)-subnormal Schmidt subgroups,” Comm. Algebra, vol. 46, no. 7, 3127–3134 (2018). Sun F., Yi X., and Kamornikov S.F., “Finite groups with generalized subnormal Schmidt subgroups,” Sib. Math. J., vol. 62, no. 2, 364–369 (2021). Yi X. and Kamornikov S.F., “Finite groups with \( \sigma \)-subnormal Schmidt subgroups,” J. Algebra, vol. 560, 181–191 (2020). Ballester-Bolinches A., Kamornikov S.F., and Yi X., “On \( \sigma \)-subnormality criteria in finite groups,” J. Pure Appl. Algebra, vol. 226, no. 2, Article 106822 (2022). Doerk K. and Hawkes T., Finite Soluble Groups, De Gruyter, Berlin and New York (1992). Schmidt O. Yu., “Groups whose all subgroups are special,” Mat. Sb., vol. 31, no. 3, 366–372 (1924). Golfand Yu.A., “On groups all subgroups of which are special,” Dokl. Akad. Nauk SSSR, vol. 60, no. 8, 1313–1315 (1948). Hu B., Huang J., and Skiba A.N., “Characterizations of finite \( \sigma \)-nilpotent and \( \sigma \)-quasinilpotent groups,” Bull. Malays. Math. Soc., vol. 42, no. 5, 2091–2104 (2019). Kamornikov S.F. and Selkin M.V., Subgroup Functors and Classes of Finite Groups, Belarusskaya Nauka, Minsk (2003) [Russian]. Kazarin L.S., Martinez-Pastor A., and Pérez-Ramos M.D., “On the Sylow graph of a group and Sylow normalizers,” Isr. J. Math., vol. 186, 251–271 (2011). Shemetkov L.A., Formations of Finite Groups, Nauka, Moscow (1978) [Russian].