Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears

Marzieh Golabbakhsh1, Xuan Wang1, Dan MacDougall2, Joshua Farrell2, Thomas Landry2, W. Robert J. Funnell1,3, Robert Adamson4,2
1Department of Biomedical Engineering, McGill University, Montréal, Canada
2School of Biomedical Engineering, Dalhousie University, Halifax, Canada
3Department of Otolaryngology - Head & Neck Surgery, McGill University, Montréal, Canada
4Electrical and Computer Engineering Department, Dalhousie University, Halifax, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Funnell WRJ, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467. https://doi.org/10.1121/1.381892

Wada H, Metoki T, Kobayashi T (1992) Analysis of dynamic behavior of human middle ear using a finite-element method. J Acoust Soc Am 92:3157–3168. https://doi.org/10.1121/1.404211

Beer HJ, Bornitz M, Hardtke HJ, Schmidt R, Hofmann G, Vogel U, Zahnert T, Hüttenbrink KB (1999) Modelling of components of the human middle ear and simulation of their dynamic behaviour. Audiol Neurootol 4:156–162. https://doi.org/10.1159/000013835

Prendergast PJ, Ferris P, Rice HJ, Blayney AW (1999) Vibro-acoustic modelling of the outer and middle ear using the finite-element method. Audiol Neurotol 4:185–191. https://doi.org/10.1159/000013839

Daniel SJ, Funnell WR, Zeitouni AG, Schloss MD, Rappaport J (2001) Clinical applications of a finite-element model of the human middle ear. J Otolaryngol 30:340–346. https://doi.org/10.2310/7070.2001.19393

Mikhael CS, Funnell WRJ, Bance M (2005) Middle-ear finite-element modelling with realistic geometry and apriori material-property estimates. CMBES Proc 28(1)

Gan RZ, Feng B, Sun Q (2004) Three-dimensional finite element modeling of human ear for sound transmission. Ann Biomed Eng 32:847–859. https://doi.org/10.1023/B:ABME.0000030260.22737.53

Zhao F, Koike T, Wang J, Sienz H, Meredith R (2009) Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys 31:907–916. https://doi.org/10.1016/j.medengphy.2009.06.009

Zhang X, Guan X, Nakmali D, Palan V, Pineda M, Gan RZ (2014) Experimental and modeling study of human tympanic membrane motion in the presence of middle ear liquid. J Assoc Res Otolaryngol JARO 15:867–881. https://doi.org/10.1007/s10162-014-0482-8

Motallebzadeh H, Maftoon N, Pitaro J, Funnell WRJ, Daniel SJ (2017) Finite-element modelling of the acoustic input admittance of the newborn ear canal and middle ear. J Assoc Res Otolaryngol JARO 18:25–48. https://doi.org/10.1007/s10162-016-0587-3

Todd NW (2005) Orientation of the manubrium mallei: inexplicably widely variable. Laryngoscope 115:1548–1552. https://doi.org/10.1097/01.mlg.0000173171.32899.4e

Todd NW (2007) Pars flaccida retraction and mastoid size: relationship in clinically normal specimens. J Laryngol Otol 121:1020–1024. https://doi.org/10.1017/S0022215107006305

Todd NW (2008) The malleus-stapes offset. Laryngoscope 118:110–115. https://doi.org/10.1097/MLG.0b013e318155a299

Bradshaw AP, Curthoys IS, Todd MJ, Magnussen JS, Taubman DS, Aw ST, Halmagyi GM (2010) A mathematical model of human semicircular canal geometry: a new basis for interpreting vestibular physiology. J Assoc Res Otolaryngol JARO 11:145–159. https://doi.org/10.1007/s10162-009-0195-6

Todd NW, Daraei P (2014) Morphologic variations of clinically normal mallei and incudes. Ann Otol Rhinol Laryngol 123:461–467. https://doi.org/10.1177/0003489414527228

Funnell WRJ, Decraemer WF (1996) On the incorporation of moiré shape measurements in finite-element models of the cat eardrum. J Acoust Soc Am 100:925–932. https://doi.org/10.1121/1.416252

Koike T, Wada H, Kobayashi T (2001) Effect of depth of conical-shaped tympanic membrane on middle-ear sound transmission. JSME Int J Ser C-Mech Syst Mach Elem Manuf. https://doi.org/10.1299/JSMEC.44.1097

De Greef D, Pires F, Dirckx JJJ (2017) Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics. Hear Res 344:195–206. https://doi.org/10.1016/j.heares.2016.11.011

Ramier A, Rosowski J, Yun S-H (2018) Optical coherence tomography for imaging the middle and inner ears: A technical review. AIP Conference Proceedings 1965(1):id.020001

Pitris C, Saunders KT, Fujimoto JG, Brezinski ME (2001) High-resolution imaging of the middle ear with optical coherence tomography: a feasibility study. Arch Otolaryngol Head Neck Surg 127:637–642. https://doi.org/10.1001/archotol.127.6.637

Heermann R, Hauger C, Issing PR, Lenarz T (2002) Erste Anwendungen der optischen Kohärenztomographie (OCT) in der Mittelohrchirurgie. Laryngo-Rhino-Otol 81:400–405. https://doi.org/10.1055/s-2002-32213

Djalilian HR, Ridgway J, Tam M, Sepehr A, Chen Z, Wong BJF (2008) Imaging the human tympanic membrane using optical coherence tomography in vivo. Otol Neurotol 29:1091–1094. https://doi.org/10.1097/MAO.0b013e31818a08ce

Just T, Lankenau E, Hüttmann G, Pau HW (2009) Optische Kohärenztomographie in der Mittelohrchirurgie. HNO 57:421–427. https://doi.org/10.1007/s00106-009-1907-2

Van der Jeught S, Dirckx JJJ, Aerts JRM, Bradu A, Podoleanu AG, Buytaert JAN (2013) Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography. JARO 14:483–494. https://doi.org/10.1007/s10162-013-0394-z

Hubler Z, Shemonski ND, Shelton RL, Monroy GL, Nolan RM, Boppart SA (2015) Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography. Quant Imaging Med Surg 5:69–77. https://doi.org/10.3978/j.issn.2223-4292.2014.11.32

Subhash HM, Wang RK (2013) Optical coherence tomography: Technical aspects. In: Liang R (ed) Biomedical optical imaging technologies: biological and medical physics, biomedical engineering. Springer-Verlag Berlin Heidelberg, pp 163–212

Chang EW, Cheng JT, Röösli C, Kobler JB, Rosowski JJ, Yun SH (2013) Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Hear Res 304:49–56. https://doi.org/10.1016/j.heares.2013.06.006

Park J, Carbajal EF, Chen X, Oghalai JS, Applegate BE (2014) Phase-sensitive optical coherence tomography using an Vernier-tuned distributed Bragg reflector swept laser in the mouse middle ear. Opt Lett 39:6233. https://doi.org/10.1364/OL.39.006233

MacDougall D, Farrell J, Brown J, Bance M, Adamson R (2016) Long-range, wide-field swept-source optical coherence tomography with GPU accelerated digital lock-in Doppler vibrography for real-time, in vivo middle ear diagnostics. Biomed Opt Express 7:4621. https://doi.org/10.1364/BOE.7.004621

Tonndorf J, Khanna SM (1972) Tympanic-membrane vibrations in human cadaver ears studied by time-averaged holography. J Acoust Soc Am 52:1221–1233. https://doi.org/10.1121/1.1913236

Cheng JT, Aarnisalo AA, Harrington E, Hernandez-Montes MDS, Furlong C, Merchant SN, Rosowski JJ (2010) Motion of the surface of the human tympanic membrane measured with stroboscopic holography. Hear Res 263:66–77. https://doi.org/10.1016/j.heares.2009.12.024

Rosowski J, Cheng J, Merchant S, Harrington E, Furlong C (2011) New data on the motion of the normal and reconstructed tympanic membrane. Otol Neurotol 32:1559–1567. https://doi.org/10.1097/MAO.0b013e31822e94f3

Tang H, Psota P, Rosowski JJ, Furlong C, Cheng JT (2021) Analyses of the tympanic membrane impulse response measured with high-speed holography. Hear Res 410:108335. https://doi.org/10.1016/j.heares.2021.108335

Wang X (2019) Finite-element modelling of the human middle ear based on X-ray micro-computed tomography and Doppler optical coherence tomography in the same ear. McGill University, Master’s

Klein T, Huber R (2017) High-speed OCT light sources and systems. Biomed Opt Express 8:828–859. https://doi.org/10.1364/BOE.8.000828

Geuzaine C, Remacle J-F (2009) Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79:1309–1331. https://doi.org/10.1002/nme.2579

Kwacz M, Rymuza Z, Michałowski M, Wysocki J (2015) Elastic properties of the annular ligament of the human stapes–AFM measurement. J Assoc Res Otolaryngol JARO 16:433–446. https://doi.org/10.1007/s10162-015-0525-9

Homma K, Du Y, Shimizu Y, Puria S (2009) Ossicular resonance modes of the human middle ear for bone and air conduction. J Acoust Soc Am 125:968–979. https://doi.org/10.1121/1.3056564

Funnell WRJ, Golabbakhsh M (2022) Supplementary files for Golabbakhsh et al. (2023). https://doi.org/10.5683/SP3/8BEY4N. Accessed 31 Dec 2022

Gyo K, Aritomo H, Goode RL (1987) Measurement of the ossicular vibration ratio in human temporal bones by use of a video measuring system. Acta Otolaryngol (Stockh) 103:87–95. https://doi.org/10.3109/00016488709134702

Koike T, Wada H, Kobayashi T (2002) Modeling of the human middle ear using the finite-element method. J Acoust Soc Am 111:1306–1317

Cheng JT, Ghanad I, Remenschneider A, Rosowski J (2021) The onset of nonlinear growth of middle-ear responses to high intensity sounds. Hear Res 405:108242. https://doi.org/10.1016/j.heares.2021.108242

Sun Q, Gan RZ, Chang K-H, Dormer KJ (2002) Computer-integrated finite element modeling of human middle ear. Biomech Model Mechanobiol 1:109–122. https://doi.org/10.1007/s10237-002-0014-z

Coker NJ (1993) Surgical anatomy of the temporal bone. Head&Neck 15:586–587

Monroy GL, Shelton RL, Nolan RM, Nguyen CT, Novak MA, Hill MC, McCormick DT, Boppart SA (2015) Noninvasive depth-resolved optical measurements of the tympanic membrane and middle ear for differentiating otitis media. Laryngoscope 125:E276–E282. https://doi.org/10.1002/lary.25141

Kuypers LC, Decraemer WF, Dirckx JJJ (2006) Thickness distribution of fresh and preserved human eardrums measured with confocal microscopy. Otol Neurotol 27:256–264. https://doi.org/10.1097/01.mao.0000187044.73791.92

De Greef D, Aernouts J, Aerts J, Cheng JT, Horwitz R, Rosowski JJ, Dirckx JJJ (2014) Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling. Hear Res 312:69–80. https://doi.org/10.1016/j.heares.2014.03.002

Volandri G, Di Puccio F, Forte P, Carmignani C (2011) Biomechanics of the tympanic membrane. J Biomech 44:1219–1236. https://doi.org/10.1016/j.jbiomech.2010.12.023

Elkhouri N, Liu H, Funnell WRJ (2006) Low-frequency finite-element modeling of the gerbil middle ear. JARO 7:399–411. https://doi.org/10.1007/s10162-006-0055-6

Hoffstetter M, Schardt F, Lenarz T, Wacker S, Wintermantel E (2010) Parameter study on a finite element model of the middle ear. Biomed Tech 55:19–26. https://doi.org/10.1515/bmt.2010.006

Willi UB, Ferrazzini MA, Huber AM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44. https://doi.org/10.1016/s0378-5955(02)00632-9

Willi UB, Ferrazzini MA, Huber AM (2003) Corrigendum to 'The incudo-malleolar joint and sound transmission losses'. Hear Res 177(1–2):123

Motallebzadeh H, Puria S (2021) Mouse middle-ear forward and reverse acoustics. J Acoust Soc Am 149:2711–2731. https://doi.org/10.1121/10.0004218

Wada H, Kobayashi T (1990) Dynamical behavior of middle ear: Theoretical study corresponding to measurement results obtained by a newly developed measuring apparatus. J Acoust Soc Am 87:237–245. https://doi.org/10.1121/1.399290

Kirikae I (1960) The structure and function of the middle ear. University of Tokyo Press, Tokyo

Speirs AD, Hotz MA, Oxland TR, Häusler R, Nolte LP (1999) Biomechanical properties of sterilized human auditory ossicles. J Biomech 32:485–491. https://doi.org/10.1016/s0021-9290(99)00012-3

Homma K, Shimizu Y, Kim N, Du Y, Puria S (2010) Effects of ear-canal pressurization on middle-ear bone- and air-conduction responses. Hear Res 263:204–215. https://doi.org/10.1016/j.heares.2009.11.013