Fine properties of functions from Hajłasz–Sobolev classes M α p , p > 0, II. Lusin’s approximation

Journal of Contemporary Mathematical Analysis - Tập 52 - Trang 30-37 - 2017
S. A. Bondarev1, V. G. Krotov1
1Belarusian State University, Minsk, Belarus

Tóm tắt

The present paper is devoted to the Lusin’s approximation of functions from Hajłasz–Sobolev classes M (X) for p > 0. It is proved that for any f ∈ M (X) and any ε > 0 there exist an open set O ε ⊂ X with measure less than ε (as a measure can be taken the corresponding capacity or Hausdorff content) and an approximating function f ε such that f = f ε on X O ε . Moreover, the correcting function f ε is regular (that is, it belongs to the underlying space M (X) and it is a locally Hölder function), and it approximates the original function in the metric of the space M (X).

Tài liệu tham khảo

S. A. Bondarev, V. G. Krotov, “Fine properties of functions from Hajlasz–Sobolev classes pα , p > 0, I. Lebesgue points”, J. Contemp. Math. Anal., 51 (6), 282–295, 2016). P. Hajlasz, “Sobolev spaces on an arbitrary metric spaces”, Potential Anal., 5 (4), 403–415, 1996). P. Hajlasz, J. Kinnunen, “Hölder qasicontinuity of Sobolev functions on metric spaces”, Rev.Mat. Iberoam., 14 (3), 601–622, 1998). J. Kinnunen, H. Tuominen, Pointwise behaviour of M1,1 Sobolev functions, Math. Zeit., 257 (3), 613–630, 2007). V. G. Krotov, M. A. Prokhorovich, “The Rate of Convergence of Steklov Means on Metric Measure Spaces and Hausdorff Dimension”, Mat. Zametki, 89 (1), 145–148, 2011). T. Heikkinen, H. Tuominen, “Approximation by Holder functions in Besov and Triebel–Lizorkin spaces”, preprint 2015, http://arxiv.org/abs/1504.02585. R. A. Macias, C. Segovia “A decomposition into atoms of distributions on spaces of homogeneous type”, Advances in Mathematics, 33, 271–309, 1979). V. G. Krotov, S.A. Bondarev, “Fine properties of functions from Hajlasz–Sobolev classes Wp a,p > 0”, Intern. conf. “Functional Spaces and Approximation Theory” (Moscow,May 25-29, 2015). V. G. Krotov, A. I. Porabkovich, Estimates of Lp-Oscillations of Functions for p > 0”, Mat. Zametki, 97 (3), 407–420, 2015). V. G. Krotov, “Weighted Lp-inequalities for sharp-maximal functions on metric spaces with measure”, J. Contemp.Math. Anal., 41 (2), 25–42, 2006). J. Kinnunen, V. Latvala, “Lebesgue points for Sobolev functions on metric spaces”, Rev. Mat. Iberoam., 18 (3), 685–700, 2002).