Fine-grained landuse characterization using ground-based pictures: a deep learning solution based on globally available data

International Journal of Geographical Information Science - Tập 34 Số 6 - Trang 1117-1136 - 2020
Shivangi Srivastava1, John E. Vargas-Muñoz2, Sylvain Lobry1, Devis Tuia1
1Laboratory of Geo-Information Science and Remote Sensing, Wageningen University & Research, Wageningen, The Netherlands
2Institute of Computing, University of Campinas, Campinas, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1145/2185520.2185597

Goodfellow I., 2016, Deep Learning [online]

Homer C., 2015, Photogram- Metric Engineering & Remote Sensing, 81, 345

Krizhevsky A., 2012, Advances in neural information processing systems, 1097

10.1109/JPROC.2017.2684300

10.1073/pnas.1619003114

10.1016/j.rse.2009.02.014

Postadjiana T., 2017, Remote Sensing and Spatial Information Sciences, 4

Produit T., 2014, Remote Sensing and Spatial Information Sciences, 2, 127

Simonyan, K. and Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.

10.1080/10095020.2017.1373955

10.1016/j.isprsjprs.2015.01.006

10.1109/MGRS.2017.2762307

Zhu, Y., Deng, X., and Newsam, S., 2018. Fine-grained Land Use classification at the city scale using ground-level images. arXiv:1802.02668 [cs]. ArXiv: 1802.02668.