Finding lower bounds on the complexity of secret sharing schemes by linear programming

Discrete Applied Mathematics - Tập 161 - Trang 1072-1084 - 2013
Carles Padró1, Leonor Vázquez2, An Yang1
1School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
2ORIONEARTH, Oil Reservoir Integration on Earth, Mexico

Tài liệu tham khảo

Anderson, 1987 Beimel, 2011, vol. 6639, 11 Beimel, 2005, On the power of nonlinear secret sharing schemes, SIAM J. Discrete Math., 19, 258, 10.1137/S0895480102412868 Beimel, 2008, Matroids can be far from ideal secret sharing, vol. 4948, 194 Beimel, 2009, Secret sharing and non-Shannon information inequalities, vol. 5444, 539 Beimel, 2005, Separating the power of monotone span programs over different fields, SIAM J. Comput., 34, 1196, 10.1137/S0097539704444038 Blakley, 1979, Safeguarding cryptographic keys, Proc. AFIPS 1979 NCC, 48, 313 Blundo, 1997, Tight bounds on the information rate of secret sharing schemes, Des. Codes Cryptogr., 11, 107, 10.1023/A:1008216403325 Brickell, 1991, On the classification of ideal secret sharing schemes, J. Cryptology, 123, 10.1007/BF00196772 Chan, 2011, The minimal set of Ingleton inequalities, IEEE Trans. Inform. Theory, 57, 1849, 10.1109/TIT.2011.2111890 Chen, 2002, Weighted decomposition construction for perfect secret sharing schemes, Comput. Math. Appl., 43, 877 Csirmaz, 1997, The size of a share must be large, J. Cryptology, 10, 223, 10.1007/s001459900029 L. Csirmaz, Secret sharing on the d-dimensional cube, Cryptology ePrint Archive, Report 2005/177, 2005. http://eprint.iacr.org. Csirmaz, 2009, An impossibility result on graph secret sharing, Des. Codes Cryptogr., 53, 195, 10.1007/s10623-009-9304-0 L. Csirmaz, G. Tardos, Secret sharing on trees: problem solved, Preprint, 2009. Available at: http://eprint.iacr.org/2009/071. R. Dougherty, C. Freiling, K. Zeger, Six new non-Shannon information in-equalities, in: ISIT’2006, 2006, pp. 233–236. R. Dougherty, C. Freiling, K. Zeger, Linear rank inequalities on five or more variables, 2009. Available at: arXiv:0910.0284v3. R. Dougherty, C. Freiling, K. Zeger, Non-Shannon information inequalities in four random variables, 2011. Available at: arXiv:1104.3602v1. Farràs, 2012, On the optimization of bipartite secret sharing schemes, Des. Codes Cryptogr., 63, 255, 10.1007/s10623-011-9552-7 Fujishige, 1978, Polymatroidal dependence structure of a set of random variables, Inf. Control, 39, 55, 10.1016/S0019-9958(78)91063-X Gharahi, 2011, The complexity of the graph access structures on six participants, Des. Codes Cryptogr. Ingleton, 1971, Representation of matroids, 149 M. Ito, A. Saito, T. Nishizeki, Secret sharing scheme realizing any access structure, in: Proc. IEEE Globecom’87, 1987, pp. 99–102. Jackson, 1994, Geometric secret sharing schemes and their duals, Des. Codes Cryptogr., 4, 83, 10.1007/BF01388562 Jackson, 1996, Perfect secret sharing schemes on five participants, Des. Codes Cryptogr., 9, 267, 10.1007/BF00129769 Karnin, 1983, On secret sharing systems, IEEE Trans. Inform. Theory, 29, 35, 10.1109/TIT.1983.1056621 Martí-Farré, 2010, On secret sharing schemes, matroids and polymatroids, J. Math. Cryptol., 4, 95, 10.1515/jmc.2010.004 Martí-Farré, 2011, Optimal complexity of secret sharing schemes with four minimal qualified subsets, Des. Codes Cryptogr., 61, 167, 10.1007/s10623-010-9446-0 Matúš, 1999, Matroid representations by partitions, Discrete Math., 203, 169, 10.1016/S0012-365X(99)00004-7 Matúš, 2007, Adhesivity of polymatroids, Discrete Math., 307, 2464, 10.1016/j.disc.2006.11.013 F. Matúš, Infinitely many information inequalities, in: IEEE International Symposium on Information Theory, 2007, pp. 41–44. Metcalf-Burton, 2011, Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid, Discrete Math., 311, 651, 10.1016/j.disc.2011.01.003 Oxley, 2011 Padró, 2010, Finding lower bounds on the complexity of secret sharing schemes by linear programming, vol. 6034, 344 Seymour, 1992, On secret-sharing matroids, J. Combin. Theory Ser. B, 56, 69, 10.1016/0095-8956(92)90007-K Shamir, 1979, How to share a secret, Commun. ACM, 22, 612, 10.1145/359168.359176 Stinson, 1992, An explication of secret sharing schemes, Des. Codes Cryptogr., 2, 357, 10.1007/BF00125203 Stinson, 1994, Decomposition constructions for secret-sharing schemes, IEEE Trans. Inform. Theory, 40, 118, 10.1109/18.272461 van Dijk, 1995, On the information rate of perfect secret sharing schemes, Des. Codes Cryptogr., 6, 143, 10.1007/BF01398012 van Dijk, 1997, More information theoretical inequalities to be used in secret sharing?, Inform. Process. Lett., 63, 41, 10.1016/S0020-0190(97)00086-0 van Dijk, 1997, A note on duality in linear secret sharing schemes, Bull. Inst. Combin. Appl., 19, 93 van Dijk, 2006, Improved constructions of secret sharing schemes by applying-(λ,ω)-decompositions, Inform. Process. Lett., 99, 154, 10.1016/j.ipl.2006.01.016 Zhang, 1998, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, 44, 1440, 10.1109/18.681320