Finding lower bounds on the complexity of secret sharing schemes by linear programming
Tài liệu tham khảo
Anderson, 1987
Beimel, 2011, vol. 6639, 11
Beimel, 2005, On the power of nonlinear secret sharing schemes, SIAM J. Discrete Math., 19, 258, 10.1137/S0895480102412868
Beimel, 2008, Matroids can be far from ideal secret sharing, vol. 4948, 194
Beimel, 2009, Secret sharing and non-Shannon information inequalities, vol. 5444, 539
Beimel, 2005, Separating the power of monotone span programs over different fields, SIAM J. Comput., 34, 1196, 10.1137/S0097539704444038
Blakley, 1979, Safeguarding cryptographic keys, Proc. AFIPS 1979 NCC, 48, 313
Blundo, 1997, Tight bounds on the information rate of secret sharing schemes, Des. Codes Cryptogr., 11, 107, 10.1023/A:1008216403325
Brickell, 1991, On the classification of ideal secret sharing schemes, J. Cryptology, 123, 10.1007/BF00196772
Chan, 2011, The minimal set of Ingleton inequalities, IEEE Trans. Inform. Theory, 57, 1849, 10.1109/TIT.2011.2111890
Chen, 2002, Weighted decomposition construction for perfect secret sharing schemes, Comput. Math. Appl., 43, 877
Csirmaz, 1997, The size of a share must be large, J. Cryptology, 10, 223, 10.1007/s001459900029
L. Csirmaz, Secret sharing on the d-dimensional cube, Cryptology ePrint Archive, Report 2005/177, 2005. http://eprint.iacr.org.
Csirmaz, 2009, An impossibility result on graph secret sharing, Des. Codes Cryptogr., 53, 195, 10.1007/s10623-009-9304-0
L. Csirmaz, G. Tardos, Secret sharing on trees: problem solved, Preprint, 2009. Available at: http://eprint.iacr.org/2009/071.
R. Dougherty, C. Freiling, K. Zeger, Six new non-Shannon information in-equalities, in: ISIT’2006, 2006, pp. 233–236.
R. Dougherty, C. Freiling, K. Zeger, Linear rank inequalities on five or more variables, 2009. Available at: arXiv:0910.0284v3.
R. Dougherty, C. Freiling, K. Zeger, Non-Shannon information inequalities in four random variables, 2011. Available at: arXiv:1104.3602v1.
Farràs, 2012, On the optimization of bipartite secret sharing schemes, Des. Codes Cryptogr., 63, 255, 10.1007/s10623-011-9552-7
Fujishige, 1978, Polymatroidal dependence structure of a set of random variables, Inf. Control, 39, 55, 10.1016/S0019-9958(78)91063-X
Gharahi, 2011, The complexity of the graph access structures on six participants, Des. Codes Cryptogr.
Ingleton, 1971, Representation of matroids, 149
M. Ito, A. Saito, T. Nishizeki, Secret sharing scheme realizing any access structure, in: Proc. IEEE Globecom’87, 1987, pp. 99–102.
Jackson, 1994, Geometric secret sharing schemes and their duals, Des. Codes Cryptogr., 4, 83, 10.1007/BF01388562
Jackson, 1996, Perfect secret sharing schemes on five participants, Des. Codes Cryptogr., 9, 267, 10.1007/BF00129769
Karnin, 1983, On secret sharing systems, IEEE Trans. Inform. Theory, 29, 35, 10.1109/TIT.1983.1056621
Martí-Farré, 2010, On secret sharing schemes, matroids and polymatroids, J. Math. Cryptol., 4, 95, 10.1515/jmc.2010.004
Martí-Farré, 2011, Optimal complexity of secret sharing schemes with four minimal qualified subsets, Des. Codes Cryptogr., 61, 167, 10.1007/s10623-010-9446-0
Matúš, 1999, Matroid representations by partitions, Discrete Math., 203, 169, 10.1016/S0012-365X(99)00004-7
Matúš, 2007, Adhesivity of polymatroids, Discrete Math., 307, 2464, 10.1016/j.disc.2006.11.013
F. Matúš, Infinitely many information inequalities, in: IEEE International Symposium on Information Theory, 2007, pp. 41–44.
Metcalf-Burton, 2011, Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid, Discrete Math., 311, 651, 10.1016/j.disc.2011.01.003
Oxley, 2011
Padró, 2010, Finding lower bounds on the complexity of secret sharing schemes by linear programming, vol. 6034, 344
Seymour, 1992, On secret-sharing matroids, J. Combin. Theory Ser. B, 56, 69, 10.1016/0095-8956(92)90007-K
Shamir, 1979, How to share a secret, Commun. ACM, 22, 612, 10.1145/359168.359176
Stinson, 1992, An explication of secret sharing schemes, Des. Codes Cryptogr., 2, 357, 10.1007/BF00125203
Stinson, 1994, Decomposition constructions for secret-sharing schemes, IEEE Trans. Inform. Theory, 40, 118, 10.1109/18.272461
van Dijk, 1995, On the information rate of perfect secret sharing schemes, Des. Codes Cryptogr., 6, 143, 10.1007/BF01398012
van Dijk, 1997, More information theoretical inequalities to be used in secret sharing?, Inform. Process. Lett., 63, 41, 10.1016/S0020-0190(97)00086-0
van Dijk, 1997, A note on duality in linear secret sharing schemes, Bull. Inst. Combin. Appl., 19, 93
van Dijk, 2006, Improved constructions of secret sharing schemes by applying-(λ,ω)-decompositions, Inform. Process. Lett., 99, 154, 10.1016/j.ipl.2006.01.016
Zhang, 1998, On characterization of entropy function via information inequalities, IEEE Trans. Inform. Theory, 44, 1440, 10.1109/18.681320