Filtration Efficiency in the Recycling Process of Particle-Reinforced Aluminum Alloys Using Different Filter Materials

International Journal of Metalcasting - Tập 17 - Trang 1681-1696 - 2022
Johannes Paul Schoß1, Benedict Baumann1, Andreas Keßler1, Michal Szucki1, Gotthard Wolf1
1Foundry Institute, TU Bergakademie Freiberg, Freiberg, Germany

Tóm tắt

In this study, filtration of aluminum alloy (Al) with different weight fractions of SiC particles (SiCp) was investigated. Therefore, three different filter materials of 20 pores per inch (ppi) ceramic foam filters (CFF) were tested. A special three-chamber furan mold was used for the casting trials to provide uniform filling and flow conditions for the filtration process. Samples from sections of the gating system, as well as from the filter, were analyzed by optical light microscopy to determine the amount, size, and distribution of SiCp. A scanning electron microscope (SEM) with energy-dispersive X-ray spectroscopy (EDS) was used for obtaining the element distribution in the composite. The filtration efficiency increased by decreasing the weight fraction from 20 to 5% of SiCp and reached a significant particle reduction of over 90%. Investigations of CFFs with a weight fraction of 10% have shown a clogging effect and metal flow interruption through the 20 ppi filter. An oxide layer was detected around the respective SiCp in the EDS. Moreover, a strong accumulation effect was observed, indicated by a steadily flattening curve of the density functions after each additional remelting cycle of the same composite material.

Tài liệu tham khảo

O. Beffort, Metallmatrix-verbundwerkstoffe: eigenschaften, anwendungen und bearbeitung. 6. Int. IWF-Kolloquium über Feinstbearbeitung technischer Oberflächen. https://www.dora.lib4ri.ch/empa/islandora/object/empa:9924 (2002). Accessed 11 April 2022 K. Gawdzińska, R. Łapawa, P. Szymański, A. Bejger, K. Nozdrzykowski, Characteristics of production methods of aluminium and magnesium matrix composite castings. Mechanika 90(3/18), 285–296 (2018) Y. Nishida, Recycling of aluminum matrix composites. Adv. Eng. Mater. 3(5), 315–317 (2001) Y. Nishida, N. Izawa, Y. Kuramasu, Recycling of metal matrix composites. Metall. Mater. Trans. A 30, 839–844 (1999) A.M. Samuel, F.H. Samuel, Foundry aspects of particulate reinforced aluminum MMCs: factors controlling composite quality. Key Eng. Mater. 104–107, 65–98 (1995). https://doi.org/10.4028/www.scientific.net/KEM.104-107.65 J. Eliasson, R. Sandström, Applications of aluminium matrix composites. Key Eng. Mater. 104–107, 3–36 (1995). https://doi.org/10.4028/www.scientific.net/KEM.104-107.3 U. Aybarc, H. Yavuz, D. Dispinar, M.O. Seydibeyoglu, The use of stirring methods for the production of SiC-reinforced aluminum matrix composite and validation via simulation studies. Int. J. Met. 13(1), 190–200 (2019). https://doi.org/10.1007/s40962-018-0250-3 D.M. Schuster, M.D. Skibo, R.S. Bruski, R. Provencher, G. Riverin, The recycling and reclamation of metal·matrix composites. JOM 45, 26–30 (1993) Rio Tinto Alcan, RT-Aluminium-Duralcan-fact-sheet-2.pdf. https://www.riotinto.com/-/media/Content/Documents/Products/Aluminium/RT-Aluminium-Duralcan-fact-sheet.pdf?rev=48ac3c3132294b6cbc5921e6c15aef3d (2014). Accessed 21 May 2021 C. Bulei, M.P. Todor, I. Kiss, Metal matrix composites processing techniques using recycled aluminium alloy. IOP Conf. Series Mater. Sci. Eng. 393, 012089 (2018). https://doi.org/10.1088/1757-899X/393/1/012089 M. Łagiewka, C. Kolmasiak, Composite centrifugal castings after remelting. Metalurgija 60(3–4), 441–443 (2021) A. Lohmüller, C. Rauber, Partikelverstärkte magnesium- oder aluminiumlegierung. DepatisNet. https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE102006023041B4&xxxfull=1 (2007). Accessed 18 March 2022 B. Stojanovic, L. Ivanovic, Application of aluminium hybrid composites in automotive industry. Teh. Vjesn. 22 (1), 247–251 (2015). https://doi.org/10.17559/TV-20130905094303 H. Kaufmann, E. Neuwirth, R. Kretz, Einfluss von filtern auf die mechanischen eigenschaften der SiC-partikelverstärkten aluminiumlegierung AlSi9Mg: Teil 1. Statische materialkenndate. Giesserei 80(11), 351–354 (1993) H. Kaufmann, E. Neuwirth, R. Kretz, C. Henkel, Einfluss von filtern auf die mechanischen eigenschaften der SiC-partikelverstärkten aluminiumlegierung AlSi9Mg: Teil 2. Dynamische materialkenndate. Giesserei 81(10), 289–293 (1994) A. Keßler, D. Brungs, O. Brandt, X. Wirth, M. Seidenschwang, M. Dette, Leistungs- und entwicklungspotential der SiC-partikelverstärkten aluminiumlegierung am beispiel gegossener bremsscheiben. Nichtmetalle in Metallen, 93–100 (2000) A. Sharma, B. Ahn, Recycling of aluminum alloy from Al-Cu metal matrix composite reinforced with SiC particulates. Korean J. Mater. Res. 28(12), 691–695 (2018). https://doi.org/10.3740/MRSK.2018.28.12.691 Transparency Market Research (TMR): Metal matrix composites (MMC) market for ground transportation, electronics/thermal management, aerospace and other end-users - global industry analysis, size, share, growth, trends and forecast, 2013–2019. https://www.transparencymarketresearch.com/metal-matrix-composites.html (2014). Accessed 07 October 2021 Grand View Research: Metal matrix composite market size, share & trends analysis report by end-use (ground transportation, electronics), by product (refractory, aluminum), by region, and segment forecasts, 2020 - 2027. https://www.grandviewresearch.com/industry-analysis/metal-matrix-composites-mmc-market (2020). Accessed 08 October 2021 Market Research Future (MRFR): Metal matrix composites (MMCs) market: information by product type (aluminum, nickel, refractory, copper and others), end-use industry (aerospace & defense, automotive, building & construction, marine, electronics, healthcare and others) and region. https://www.marketresearchfuture.com/reports/metal-matrix-composites-mmcs-market-8131 (2021). Accessed 07 October 2021 Research Nester: Metal matrix composites market segmentation by product type (aluminum MMC, superalloy MMC, nickel MMC, copper MMC, and others); by end-use industry (transportation, aerospace, thermal/electronics management, marine, and others) - global demand analysis. https://www.researchnester.com/reports/metal-matrix-composites-market/1024 (2021). Accessed 07 October 2021 Duralcan USA: Duralcan composite casting guidelines. VIII-1, San Diego, California (1990) Umweltbundesamt: factsheet-aluminium_fi_barrierefrei.pdf. Umweltbundesamt. http://www.umweltbundesamt.de/sites/default/files/medien/3521/dokumente/factsheet-aluminium_fi_barrierefrei.pdf (2019). Accessed 02 September 2021 K. Balasubramanian, L.N. Bartlett, R. O’Malley, S. Chakraborty, M. Xu, Filtration efficiency of inclusions in lightweight FeMnAl steels. Int. J. Met. 14(2), 328–341 (2020). https://doi.org/10.1007/s40962-019-00372-7 S. Chakraborty, R.J. O’Malley, L. Bartlett, M. Xu, Removal of alumina inclusions from molten steel by ceramic foam filtration. Int. J. Met. 15, 1006–1020 (2021). https://doi.org/10.1007/s40962-020-00537-9 S. Chakraborty, R.J. O’Malley, L. Bartlett, Ceramic foam filter micropores as sites for liquid inclusion retention. Int. J. Met. 16(1), 20–34 (2022). https://doi.org/10.1007/s40962-021-00585-9 K. Raiber, P. Hammerschmid, D. Janke, Experimental studies on Al203 inclusion removal from steel melts using ceramic filters. ISIJ Int. 35, 380–388 (1995). https://doi.org/10.2355/isijinternational.35.380 M. Dette, A. Keßler, D. Brungs, Induktionstiegelofen und dessen verwendung zum herstellen von gußteilen aus partikelverstärkten aluminium- und magnesiumlegierungen. DepatisNet. https://depatisnet.dpma.de/DepatisNet/depatisnet?action=pdf&docid=DE000019906939C2&xxxfull=1 (2000). Accessed 13 December 2021 A. Keßler, M. Dette, D. Brungs, Schnelles induktives schmelzen partikelverstärkter aluminiumlegierungen. Giessereiforschung 53(1), 15–24 (2001) Rheinfelden Alloys GmbH & Co. KG: Verarbeitungsbasisdaten_RHEINFELDEN-ALLOYS_2015_DE. https://rheinfelden-alloys.eu/wp-content/uploads/2016/01/Verarbeitungsbasisdaten_RHEINFELDEN-ALLOYS_2015_DE.pdf (2015). Accessed 08 April 2022 H. Becker, B. Fankhänel, C. Voigt, A. Charitos, M. Stelter, C.G. Aneziris, A. Leineweber, Interaction of Fe-containing, secondary Al-Si alloy with oxide and carbon-containing ceramics for Fe removal. Adv. Eng. Mater. 24(2), 2100595 (2022). https://doi.org/10.1002/adem.202100595 G.M. Dubickij, Cast Metals Research Journal, vol. 10–11 (American Foundrymen’s Society, USA, 1974), p.14 G.M. Dubickij, Litnikovye sistemy (Maschgiz, Moscow-Swerdlowsk, 1951) E. Jäckel: Einfluss von filterstruktur und gießsystem auf die filtrationseffizienz im aluminiumformguss. Eds.: Wolf, G., Aneziris, C.G., TU Bergakademie Freiberg, PhD thesis (2019) B. Baumann, A. Keßler, E. Hoppach, G. Wolf, M. Szucki, O. Hilger, Investigation of particle filtration in aluminium alloy. Arch. Foundry Eng. 21(3), 70–80 (2021). https://doi.org/10.24425/afe.2021.138668 J.P. Schoß, H. Becker, A. Keßler, A. Leineweber, G. Wolf, Removal of iron from a secondary Al-Si die-casting alloy by metal melt filtration in a laboratory filtration apparatus. Adv. Eng. Mater. 24(2), 2100695 (2022). https://doi.org/10.1002/adem.202100695 M. Hemmati, M. Divandari, The effects of oxide film characteristics on the bubble damage defect in Al5Mg and Al7SiMg alloys. Proceedings of Iran International Aluminum Conference: IIAC (2012) J. Campbell, Entrainment defects. Mater. Sci. Technol. 22(2), 127–145 (2006). https://doi.org/10.1179/174328406X74248 J. Rotta, Experimenteller beitrag zur entstehung turbulenter strömung im rohr. Ing. Arch. 24, 258–281 (1956) X. Luo, Y. Han, Q. Li, X. Hu, Y. Li, Y. Zhou, Effect of pouring temperature on microstructure and properties of A356 alloy strip by a novel semisolid micro fused-casting for metal. J. Wuhan Univ. Technol.-Mat. Sci. Ed. 34, 1205–1209 (2019). https://doi.org/10.1007/s11595-019-2179-7 C. Voigt, E. Jäckel, F. Taina, T. Zienert, A. Salomon, G. Wolf, C.G. Aneziris, P. Le Brun, Filtration efficiency of functionalized ceramic foam filters for aluminum melt filtration. Metall. Mater. Trans. B 48, 497–505 (2017). https://doi.org/10.1007/s11663-016-0869-5 J. Campbell, Cavitation in liquid and solid metals: role of bifilms. Mater. Sci. Technol. 31(5), 565–572 (2015). https://doi.org/10.1179/1743284714Y.0000000581 M. Divandari, J. Campbell, Oxide film characteristics of Al7SiMg alloy in dynamic conditions in casting. Int. J. Cast Met. Res. 17(3), 182–187 (2004). https://doi.org/10.1179/136404604225017546 L.N.W. Damoah, L. Zhang, Removal of inclusions from aluminum through filtration. Metall. Mater. Trans. B 41(4), 886–907 (2010). https://doi.org/10.1007/s11663-010-9367-3