Filter-Laver measurability
Tài liệu tham khảo
Brendle, 2005, Silver measurability and its relation to other regularity properties, Math. Proc. Camb. Philos. Soc., 138, 135, 10.1017/S0305004104008187
Bartoszyński, 1995
Brendle, 1999, Solovay-type characterizations for forcing-algebras, J. Symb. Log., 64, 1307, 10.2307/2586632
Brendle, 1999, Ultrafilters on ω—their ideals and their cardinal characteristics, Trans. Am. Math. Soc., 351, 2643, 10.1090/S0002-9947-99-02257-6
Dečo, 2015, Strongly unbounded and strongly dominating sets of reals generalized, Arch. Math. Log., 54, 825, 10.1007/s00153-015-0442-y
Dečo, 2013, Strongly dominating sets of reals, Arch. Math. Log., 52, 827, 10.1007/s00153-013-0347-6
Fischer, 2014, Cichoń's diagram, regularity properties and Δ31 sets of reals, Arch. Math. Log., 53, 695, 10.1007/s00153-014-0385-8
Farkas
Groszek, 1987, Combinatorics on ideals and forcing with trees, J. Symb. Log., 52, 582, 10.1017/S0022481200029637
Goldstern, 1995, On tree ideals, Proc. Am. Math. Soc., 123, 1573, 10.1090/S0002-9939-1995-1233972-4
Hrušák, 2014, Mathias–Prikry and Laver–Prikry type forcing, Ann. Pure Appl. Logic, 165, 880, 10.1016/j.apal.2013.11.003
Ikegami, 2010, Forcing absoluteness and regularity properties, Ann. Pure Appl. Logic, 161, 879, 10.1016/j.apal.2009.10.005
Kechris, 1995, Classical Descriptive Set Theory, vol. 156
Khomskii, 2012
Yurii Khomskii, Giorgio Laguzzi, Full-splitting miller trees and infinitely often equal reals, preprint, 2015.
Laguzzi, 2014, On the separation of regularity properties of the reals, Arch. Math. Log., 53, 731, 10.1007/s00153-014-0386-7
Louveau, 1976, Une méthode topologique pour l'étude de la propriété de Ramsey, Isr. J. Math., 23, 97, 10.1007/BF02756789
Labedzki, 1995, Hechler reals, J. Symb. Log., 60, 444, 10.2307/2275841
Miller
Medini, 2016, Every filter is homeomorphic to its square, Bull. Pol. Acad. Sci., Math., 64, 63
Sabok, 2012, Complexity of Ramsey null sets, Adv. Math., 230, 1184, 10.1016/j.aim.2012.03.001
Zapletal, 2003, Isolating cardinal invariants, J. Math. Log., 3, 143, 10.1142/S0219061303000066