Film thickness effect in c-axis oxygen vacancy-passivated ZnO prepared via atomic layer deposition by using H2O2
Tài liệu tham khảo
Chu, 2011, Electrically pumped waveguide lasing from ZnO nanowires, Nat. Nanotechnol., 6, 506, 10.1038/nnano.2011.97
Röder, 2015, Ultrafast dynamics of lasing semiconductor nanowires, Nano Lett., 15, 4637, 10.1021/acs.nanolett.5b01271
Pan, 2013, Self-gating effect induced large performance improvement of ZnO nanocomb gas sensors, ACS Nano, 7, 9318, 10.1021/nn4040074
Zhai, 2009, A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors, Sensors, 9, 6504, 10.3390/s90806504
Gedamu, 2014, Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors, Adv. Mater., 26, 1541, 10.1002/adma.201304363
Pan, 2013, High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nat. Photonics, 7, 752, 10.1038/nphoton.2013.191
Bao, 2015, Flexible and controllable piezo-phototronic pressure mapping sensor matrix by ZnO NW/p-polymer LED array, Adv. Funct. Mater., 25, 2884, 10.1002/adfm.201500801
Lahmar, 2016, Effect of the thickness of the ZnO buffer layer on the properties of electrodeposited p-Cu2O/n-ZnO/n-AZO heterojunctions, RSC Adv., 6, 68663, 10.1039/C6RA04834J
Saarenpää, 2010, Aluminum doped zinc oxide films grown by atomic layer deposition for organic photovoltaic devices, Sol. Energy Mater. Sol. Cells, 94, 1379, 10.1016/j.solmat.2010.04.006
Kumar, 2014, Pulse laser deposited nanostructured ZnO thin films: a review, J. Nanosci. Nanotechnol., 14, 1911, 10.1166/jnn.2014.9120
Park, 2009, Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel, Adv. Mater., 21, 678, 10.1002/adma.200801470
Fan, 2013, p-Type ZnO materials: theory, growth, properties and devices, Prog. Mater. Sci., 58, 874, 10.1016/j.pmatsci.2013.03.002
Ai, 2018, The effect of the ZnO thickness layer on the porous silicon properties deposited by chemical vapor deposition, AIP Conf. Proc., 2034
S.H. Baek, J.H. Kim, J.K. Shin, Fabrication and optimization of Al-doped zinc oxide layer for application in radial pn junction silicon solar cells, 2010 35th IEEE Photovoltaic Specialists Conference (2010) 001788–001792. https://doi.org/10.1109/PVSC.2010.5615899.
Singh, 2014, Thickness dependence of optoelectronic properties in ALD grown ZnO thin films, Appl. Surf. Sci., 289, 27, 10.1016/j.apsusc.2013.10.071
Samavati, 2016, Radio frequency magnetron sputtered ZnO/SiO2/glass thin film: role of ZnO thickness on structural and optical properties, J. Alloys Compd., 671, 170, 10.1016/j.jallcom.2016.02.099
Ri, 2011, The structural properties of Al doped ZnO films depending on the thickness and their effect on the electrical properties, Appl. Surf. Sci., 258, 1283, 10.1016/j.apsusc.2011.07.022
Bouderbala, 2008, Thickness dependence of structural, electrical and optical behaviour of undoped ZnO thin films, Phys. B, 403, 3326, 10.1016/j.physb.2008.04.045
Chen, 2015, Effects of film thickness and thermal treatment on the structural and opto-electronic properties of Ga-doped ZnO films deposited by sol–gel method, Sol. Energy Mater. Sol. Cells, 137, 202, 10.1016/j.solmat.2015.02.016
Mridha, 2007, Effect of thickness on the structural, electrical and optical properties of ZnO films, Mater. Res. Bull., 42, 875, 10.1016/j.materresbull.2006.08.019
Garcés, 2015, Effect of thickness on structural and electrical properties of Al-doped ZnO films, Thin Solid Films, 574, 162, 10.1016/j.tsf.2014.12.013
Mortezaali, 2016, Thickness effect of nanostructured ZnO thin films prepared by spray method on structural, morphological and optical properties, Microelectron. Eng., 151, 19, 10.1016/j.mee.2015.11.016
Öztas, 2008, Thickness dependence of structural, electrical and optical properties of sprayed ZnO: Cu films, Thin Solid Films, 516, 1703, 10.1016/j.tsf.2007.05.018
Shim, 2002, Effect of the variation of film thickness on the structural and optical properties of ZnO thin films deposited on sapphire substrate using PLD, Appl. Surf. Sci., 186, 474, 10.1016/S0169-4332(01)00746-2
Zhu, 2006, Effect of thickness on the structure and properties of ZnO thin films prepared by pulsed laser deposition, Jpn. J. Appl. Phys., 45, 7860, 10.1143/JJAP.45.7860
Myoung, 2002, Effects of thickness variation on properties of ZnO thin films grown by pulsed laser deposition, Jpn. J. Appl. Phys., 41, 28, 10.1143/JJAP.41.28
Xiong, 2002, Control of p-and n-type conductivity in sputter deposition of undoped ZnO, Appl. Phys. Lett., 80, 1195, 10.1063/1.1449528
Singh, 2003, p-Type conduction in codoped ZnO thin films, J. Appl. Phys., 93, 396, 10.1063/1.1527210
Yu, 2009, Relationship between the photoluminescence and conductivity of undoped ZnO thin films grown with various oxygen pressures, Appl. Surf. Sci., 256, 792, 10.1016/j.apsusc.2009.08.061
Ma, 2003, Effect of the oxygen partial pressure on the properties of ZnO thin films grown by metalorganic vapor phase epitaxy, J. Cryst. Growth, 255, 303, 10.1016/S0022-0248(03)01244-2
Ma, 2004, Control of conductivity type in undoped ZnO thin films grown by metalorganic vapor phase epitaxy, J. Appl. Phys., 95, 6268, 10.1063/1.1713040
Lee, 2018, Effect of oxygen pressure on electrical property of a-SZTO thin film transistor, Trans. Electr. Electron. Mater., 19, 423, 10.1007/s42341-018-0065-1
Wang, 2018, Oxygen vacancy-passivated ZnO thin film formed by atomic layer deposition using H2O2, J. Vac. Sci. Technol., A 36, 10.1116/1.5012022
Wang, 2018, Low temperature method to passivate oxygen vacancies in un-doped ZnO films using atomic layer deposition, Thin Solid Films, 660, 852, 10.1016/j.tsf.2018.03.003
Choi, 2014, A simple approach to the fabrication of fluorine-doped zinc oxide thin films by atomic layer deposition at low temperatures and an investigation into the growth mode, J. Mater. Chem. C, 2, 98, 10.1039/C3TC31478B
Pung, 2008, Preferential growth of ZnO thin films by the atomic layer deposition technique, Nanotechnology, 19, 10.1088/0957-4484/19/43/435609
Lale, 2018, Study of aluminium oxide thin films deposited by plasma-enhanced atomic layer deposition from tri-methyl-aluminium and dioxygen precursors: Investigation of interfacial and structural properties, Thin Solid Films, 666, 20, 10.1016/j.tsf.2018.09.028
Kang, 2016, Thickness-dependent growth orientation of F-doped ZnO films formed by atomic layer deposition, J. Vac. Sci. Technol., A 34, 01A144, 10.1116/1.4938180
Choi, 2014, Thickness-dependent electrical, structural, and optical properties of ALD-grown ZnO Films, J. Microelectron. Packag. Soc., 21, 31, 10.6117/kmeps.2014.21.2.031
Park, 2004, Controlling preferred orientation of ZnO thin films by atomic layer deposition, J. Mater. Sci., 39, 2195, 10.1023/B:JMSC.0000017786.81842.ae
Ong, 2002, Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films, Appl. Phys. Lett., 80, 941, 10.1063/1.1448660
A S. Vorokh, Scherrer formula: estimation of error in determining small nanoparticle size. Nanosystems: physics, chemistry, mathematics, 9 (2018) 364-369. http://dx.doi.org/10.17586/2220-8054-2018-9-3-364-369.
Ahn, 2009, A comparative analysis of deep level emission in ZnO layers deposited by various methods, J. Appl. Phys., 105
Ye, 2005, Correlation between green luminescence and morphology evolution of ZnO films, Appl. Phys. A, 81, 759, 10.1007/s00339-004-2996-0
Vempati, 2012, One-step synthesis of ZnO nanosheets: a blue-white fluorophore, Nanoscale Res. Lett., 7, 470, 10.1186/1556-276X-7-470
Tang, 1998, Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films, Appl. Phys. Lett., 10.1063/1.121620
Tan, 2005, Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition, J. Appl. Phys., 98, 10.1063/1.1940137
Moss, 1954, The interpretation of the properties of indium antimonide, Proc. Phys. Soc. London, Sect. B 67, 10.1088/0370-1301/67/10/306
Burstein, 1954, Anomalous optical absorption limit in InSb, Phys. Rev., 93, 632, 10.1103/PhysRev.93.632