Field test of a novel detection device for Mycobacterium tuberculosis antigen in cough

BMC Infectious Diseases - Tập 10 - Trang 1-6 - 2010
Ruth McNerney1, Beyene A Wondafrash1,2, Kebede Amena2, Ato Tesfaye2, Elaine M McCash3, Nicol J Murray3
1Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
2Adama Hospital, Nazareth, Ethiopia
3Rapid Biosensor Systems Ltd, Babraham, Cambridge, UK

Tóm tắt

Tuberculosis is a highly infectious disease that is spread from person to person by infected aerosols emitted by patients with respiratory forms of the disease. We describe a novel device that utilizes immunosensor and bio-optical technology to detect M. tuberculosis antigen (Ag85B) in cough and demonstrate its use under field conditions during a pilot study in an area of high TB incidence. The TB Breathalyzer device (Rapid Biosensor Systems Ltd) was field tested in the outpatient clinic of Adama Hospital, Ethiopia. Adults seeking diagnosis for respiratory complaints were tested. Following nebulization with 0.9% saline patients were asked to cough into a disposable collection device where cough aerosols were deposited. Devices were then inserted into a portable instrument to assess whether antigen was present in the sample. Demographic and clinical data were recorded and all patients were subjected to chest radiogram and examination of sputum by Ziehl-Nielsen microscopy. In the absence of culture treatment decisions were based on smear microscopy, chest x-ray and clinical assessment. Breathalyzer testing was undertaken by a separate physician to triage and diagnostic assessment. Sixty individuals were each subjected to a breathalyzer test. The procedure was well tolerated and for each patient the testing was completed in less than 10 min. Positive breath test results were recorded for 29 (48%) patients. Of 31 patients with a diagnosis of tuberculosis 23 (74%; 95% CI 55-87) were found positive for antigen in their breath and 20 (64%; 95% CI 45-80) were smear positive for acid fast bacilli in their sputum. Six patients provided apparent false positive breathalyzer results that did not correlate with a diagnosis of tuberculosis. We propose that the breathalyzer device described warrants further investigation as a tool for studying exhalation of M. tuberculosis. The portability, simplicity of use and speed of the test device suggest it may also find use as a tool to aid early identification of infectious cases. We recommend studies be undertaken to determine the diagnostic sensitivity and specificity of the device when compared to microbiological and clinical indicators of tuberculosis disease.

Tài liệu tham khảo

World Health Organisation: Global tuberculosis control: surveillance, planning, financing. 2009, Geneva: WHO Corbett EL, Marston B, Churchyard GJ, De Cock KM: Tuberculosis in sub-Saharan Africa: opportunities, challenges, and change in the era of antiretroviral treatment. Lancet. 2006, 367 (9514): 926-937. 10.1016/S0140-6736(06)68383-9. Zager EM, McNerney R: Multidrug-resistant tuberculosis. BMC Infect Dis. 2008, 8: 10-10.1186/1471-2334-8-10. Zignol M, Hosseini MS, Wright A, Weezenbeek CL, Nunn P, Watt CJ, Williams BG, Dye C: Global incidence of multidrug-resistant tuberculosis. J Infect Dis. 2006, 194 (4): 479-485. 10.1086/505877. Perkins MD, Cunningham J: Facing the crisis: improving the diagnosis of tuberculosis in the HIV era. J Infect Dis. 2007, 196 (Suppl 1): S15-27. 10.1086/518656. Kamat SR, Dawson JJ, Devadatta S, Fox W, Janardhanam B, Radhakrishna S, Ramakrishnan CV, Somasundaram PR, Stott H, Velu S: A controlled study of the influence of segregation of tuberculous patients for one year on the attack rate of tuberculosis in a 5-year period in close family contacts in South India. Bull World Health Organ. 1966, 34 (4): 517-532. Marks SM, Taylor Z, Qualls NL, Shrestha-Kuwahara RJ, Wilce MA, Nguyen CH: Outcomes of contact investigations of infectious tuberculosis patients. Am J Respir Crit Care Med. 2000, 162 (6): 2033-2038. Kato-Maeda M, Small PM: How molecular epidemiology has changed what we know about tuberculosis. West J Med. 2000, 172 (4): 256-259. 10.1136/ewjm.172.4.256. Valway SE, Sanchez MP, Shinnick TF, Orme I, Agerton T, Hoy D, Jones JS, Westmoreland H, Onorato IM: An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis. N Engl J Med. 1998, 338 (10): 633-639. 10.1056/NEJM199803053381001. Fennelly KP: Variability of airborne transmission of Mycobacterium tuberculosis: implications for control of tuberculosis in the HIV era. Clin Infect Dis. 2007, 44 (10): 1358-1360. 10.1086/516617. Riley RL, Mills CC, Nyka W, Weinstock N, Storey PB, Sultan LU, Riley MC, Wells WF: Aerial dissemination of pulmonary tuberculosis. A two-year study of contagion in a tuberculosis ward. 1959. Am J Epidemiol. 1995, 142 (1): 3-14. Escombe AR, Oeser C, Gilman RH, Navincopa M, Ticona E, Martinez C, Caviedes L, Sheen P, Gonzalez A, Noakes C, et al: The detection of airborne transmission of tuberculosis from HIV-infected patients, using an in vivo air sampling model. Clin Infect Dis. 2007, 44 (10): 1349-1357. 10.1086/515397. Fennelly KP, Martyny JW, Fulton KE, Orme IM, Cave DM, Heifets LB: Cough-generated aerosols of Mycobacterium tuberculosis: a new method to study infectiousness. Am J Respir Crit Care Med. 2004, 169 (5): 604-609. 10.1164/rccm.200308-1101OC. Schafer MP, Fernback JE, Jensen PA: Sampling and analytical method development for qualitative assessment of airborne mycobacterial species of the Mycobacterium tuberculosis complex. Am Ind Hyg Assoc J. 1998, 59 (8): 540-546. Chen PS, Li CS: Concentration profiles of airborne Mycobacterium tuberculosis in a hospital. Aerosol Sci Tech. 2008, 42 (3): 194-200. 10.1080/02786820801922953. McCash E, Wheeler G, Colby E, Storkey M, Stewart J, Murray N, Glauser A: Biological measurement system. 2008, Office UPaT. US: Rapid Biosensor Systems Limited Mustafa AS, Shaban FA, Abal AT, Al-Attiyah R, Wiker HG, Lundin KE, Oftung F, Huygen K: Identification and HLA restriction of naturally derived Th1-cell epitopes from the secreted Mycobacterium tuberculosis antigen 85B recognized by antigen-specific human CD4(+) T-cell lines. Infect Immun. 2000, 68 (7): 3933-3940. 10.1128/IAI.68.7.3933-3940.2000. Banwell CN, McCash EM: Fundamentals of Molecular Spectroscopy. 1994, Mcgraw-Hill Education - Europe (United States), 4 Wells WF: On Air-Borne Infection Study II. Droplets and droplet nuclei. American Journal of Hygiene. 1934, 20: 611-618. Hatch TF: Distribution and deposition of inhaled particles in respiratory tract. Bacteriol Rev. 1961, 25: 237-240. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/10/161/prepub