Cây trồng trên cánh đồng để phục hồi đất bị ô nhiễm kim loại. Một bài tổng quan

Springer Science and Business Media LLC - Tập 8 - Trang 1-17 - 2009
Teofilo Vamerali1, Marianna Bandiera2, Giuliano Mosca2
1Department of Environmental Sciences, University of Parma, Parma, Italy
2Department of Environmental Agronomy and Crop Sciences, University of Padova, Legnaro, Padova, Italy

Tóm tắt

Việc sử dụng cây cỏ cao để phục hồi đất bị ô nhiễm được gọi là phục hồi sinh học, một thuật ngữ được đặt ra cách đây 15 năm. Trong số các công nghệ xanh giải quyết ô nhiễm kim loại, phương pháp chiết xuất qua thực vật đã nhận được sự chú ý ngày càng tăng kể từ khi phát hiện ra các loài cây tích tụ mạnh (hyperaccumulator), có khả năng tập trung nồng độ cao các kim loại cụ thể trong khối lượng sinh khối có thể thu hoạch. Sự phát triển nhỏ bé của thân và rễ cây cùng với việc thiếu hạt giống có sẵn trên thị trường đã thúc đẩy nghiên cứu về các loài sinh khối, bao gồm cả cây trồng thảo mộc. Trong bài báo này, chúng tôi tổng hợp kết quả khảo sát tài liệu từ năm 1995 đến 2009 trong các bản tóm tắt CAB về phục hồi sinh học và kim loại nặng đối với các loài cây trồng, với số lần trích dẫn ngày càng tăng, đặc biệt là sau năm 2001. Ngoài Brassica juncea (L.) Czern. được trích dẫn nhiều nhất, thường được nhắc đến như một loài cây tích tụ mạnh của nhiều kim loại khác nhau, các nghiên cứu chủ yếu tập trung vào Helianthus annuus L., Zea mays L. và Brassica napus L., trong đó Brassica napus có số lần trích dẫn tăng nhất hàng năm. Cây trồng có thể bù đắp cho nồng độ kim loại thấp bằng cách tạo ra năng suất sinh khối lớn hơn, nhưng dữ liệu hiện có từ các thí nghiệm tại chỗ hiện tại rất ít. Việc sử dụng các chất cải thiện hoặc chelator thường được thử nghiệm trên thực địa để cải thiện khả năng thu hồi kim loại, cho phép đạt được nồng độ vượt mức bình thường. Các giá trị Zn vượt quá 1.000 mg kg−1 được tìm thấy trong các loài Brassica spp., Phaseolus vulgaris L. và Zea mays, và Cu cao hơn 500 mg kg−1 trong Zea mays, Phaseolus vulgaris và Sorghum bicolor (L.) Moench. Nồng độ chì vượt quá 1.000 mg kg−1 được đo trong Festuca spp. và các loài Fabaceae khác nhau. Asen có giá trị cao hơn 200 mg kg−1 trong cây cao lương và đậu nành, trong khi nồng độ Cd thường thấp hơn 50 mg kg−1. Phương pháp chiết xuất qua thực vật hỗ trợ hiện đang được tạo điều kiện bởi sự có sẵn của các chelator ít độc và phân hủy cao, như EDDS và nitrilotriacetate. Hiện tại, nhiều nỗ lực thí nghiệm đang được tiến hành để cải thiện sự phát triển của cây và sự hấp thụ kim loại, và kết quả đã đạt được từ việc áp dụng axit hữu cơ, auxin, axit humic và sự hình thành nấm mycorrhiza. Hiệu quả phục hồi sinh học của cây trồng trên cánh đồng hiếm khi cao, nhưng tiềm năng phát triển lớn hơn của chúng so với các loài cây tích tụ mạnh nên được xem xét một cách tích cực, bởi vì chúng có thể thiết lập một lớp tán lá xanh dày trong đất ô nhiễm, cải thiện cảnh quan và giảm tính di động của các chất ô nhiễm qua nước, xói mòn gió và thấm nước.

Từ khóa

#phục hồi sinh học #cây trồng #ô nhiễm kim loại #chiết xuất qua thực vật #nấm mycorrhiza

Tài liệu tham khảo

Abbott DE, Essington ME, Mullen MD, Ammons JT (2001) Fly ash and lime-stabilized biosolid mixtures in mine spoil reclamation. Simulated weathering. J Environ Qual 30:608–616 Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York Adriano DC (1992) Biogeochemistry of trace metals. Lewis Publishers, Boca Raton Adriano DC (2001) Trace elements in the terrestrial environments. Biogeochemistry, bioavailability, and risks of heavy metals, 2nd edn. Springer, New York Adriano DC, Wenzel WW, Vangronsveld J, Bolan NS (2004) Role of assisted natural remediation in environmental cleanup. Geoderma 122:121–142 Alloway BJ (1990) Soil processes and behaviour of metals. In: Alloway BJ (ed) Heavy metals in soils. Blackie, Glasgow, pp 7–28 Alvarenga P, Gonçalves AP, Fernandes RM, de Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2009) Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Chemosphere 74:1292–1300 Álvarez E, Fernández Marcos ML, Vaamonde C, Fernández-Sanjurjo MJ (2003) Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation. Sci Total Environ 313:185–197 Anderson TA, Coats JR (1995) An overview of microbial degradation in the rhizosphere and its implications for bioremediation. In: Skipper HD, Turco RF (eds) Bioremediation, science and applications. SSSA, ASA, and CSS, Madison, pp 135–143 Angelova V, Ivanov K (2009) Bio-accumulation and distribution of heavy metals in black mustard (Brassica nigra Koch). Environ Monit Assess 153:449–459 Arienzo M, Adamo P, Cozzolino V (2004) The potential of Lolium perenne for revegetation of contaminated soils from a metallurgical site. Sci Total Environ 319:13–25 Arshad J (2007) Allelopathic interactions in mycorrhizal associations. Allelopathy J 20:9–42 Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126 Baker AJM, Walker PL (1989) Ecophysiology of metal uptake by tolerant plants. In: Shaw A (ed) Heavy metal tolerance in plants—Evolutionary aspects. CRC Press, Boca Raton, Florida, pp 155–178 Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycling 1:41–49 Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publ, Boca Raton, pp 85–107 Bandiera M, Mosca G, Vamerali T (2009a) Effectiveness of roots in preventing metal leaching in EDDS-assisted phytoextraction with Brassica carinata A. Braun. and Raphanus sativus L. var. oleiformis. In: Proceedings of 7th ISRR symposium “root research and applications” (RootRAP), Boku, Vienna, 2–4 Sept 2009, pp 1–4 Bandiera M, Mosca G, Vamerali T (2009b) Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var oleiformis Pers.) in metal-polluted wastes. Desalination 247:79–92 Barceló J, Vázquez MD, Mádico J, Poschenrieder C (1994) Hyperaccumulation of zinc and cadmium in Thlaspi caerulescens. In: Varnavas SP (ed) Environmental contamination. CEP Consultants Ltd., Edinburgh, pp 132–134 Basta NT, Gradwohl R, Snethen KL, Schroder JL (2001) Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate. J Environ Qual 30:1222–1230 Basta NT, Ryan JA, Chaney RL (2005) Trace element chemistry in residual-treated soil. Key concepts and metal bioavailability. J Environ Qual 34:49–63 Baum C, Hrynkiewicz K, Lienweber P, Meiβner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix x dasyclados). Plant Nutr Soil Sci 169:516–522 Berti WR, Cunningham SD (2000) Phytostabilization of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 71–88 Bianchi V, Masciandaro G, Giraldi D, Ceccanti B, Iannelli R (2008) Enhanced heavy metal phytoextraction from marine dredged sediments comparing conventional chelating agents (citric acid and EDTA) with humic substances. Water Air Soil Pollut 193:323–333 Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865 Boyd RS, Jaffré T, Odom JW (1999) Variation of nickel content in the nickel-hyperaccumulating shrub Psychotria douarrei (Rubiaceae) from New Caledonia. Biotropica 31:403–410 Brooks RR (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57 Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362 Brown SL, Henry CH, Chaney R, Compton H, Volder PSD (2003) Using municipal biosolids in combination with other residuals to restore metal-contaminated areas. Plant Soil 249:203–215 Brown SL, Sprenger M, Maxemchuk A, Compton H (2005) Ecosystem function in alluvial tailings after biosolids and lime application. J Environ Qual 34:1–6 Brunnert H, Zadrazil F (1985) The influence of zinc on the translocation of cadmium and mercury in the fungus Agrocybe aegerita (a model system). Angew Bot 59:469–477 Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106 Cakmak I, Sari N, Marschner H, Ekiz H, Kalayci M (1996) Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180:183–189 Campbell BD, Grime JP (1989) A new method of exposing developing root systems to controlled patchiness in mineral nutrient supply. Ann Bot 63:395–400 Cataldo DA, Wildung RE (1978) Soil and plant factors influencing the accumulation of heavy metals by plants. Environ Health Perspect 27:149–159 Cataldo DA, Garland TR, Wildung RE (1978) Nickel in plants: II. Distribution and chemical form in soybean plants. Plant Physiol 62:566–570 Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284 Chen YX, Lin Q, Luo YM, He YF, Zhen SJ, Yu YL, Tian GM, Wong MH (2003) The role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807–811 Chen YH, Li XD, Shen ZG (2004) Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere 57:187–196 Cieśliński G, Van Rees KCJ, Szmigielska AM, Krishnamurti GSR, Huang PM (1998) Low-molecular weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 203:109–117 Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker Inc., New York, pp 483–510 Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88(11):1707–1719 Clemens S, Palmgren MG, Kraemer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315 Clemente R, Walker DJ, Berna MP (2005) Uptake of heavy metals and As by Brassica juncea grown in a contaminated soil in Aznalcollar (Spain): the effect of soil amendments. Environ Pollut 138:46–58 Cobbet CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832 Colpaert JV, Van Assche JA (1992) The effects of cadmium and the cadmium-zinc interaction on the axenic growth of ectomycorrhizal fungi. Plant Soil 145:237–243 Davies FT Jr, Puryear JD, Newton RJ, Egilla JN, Grossi JAS (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). Plant Physiol 158:777–786 Delfine S, Tognetti R, Desiderio E, Alvino A (2005) Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron Sustain Dev 25:183–191 Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168 Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25 Dorlhac de Borne F, Elmayan T, De Roton C, De Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Molecul Breeding 4:83–90 Duffus JH (2002) “Heavy metals”—A meaningless term? Pure Appl Chem 74:793–807 Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D, Raskin I (2002) Bioengineering of a phytoremediation plant by means of somatic hybridization. Int J Phytorem 4:117–126 Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781 Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R, Kochian LV (1997) Phytoextraction of cadmium and zinc from a contaminated site. J Environ Qual 26:1424–1430 EEA (2003) Soil degradation. In: Europe’s environment: the third assessment. Environmental assessment report N. 10. EEA, Copenhagen, pp 198–212 EEA (2007) Progress in management of contaminated sites (CSI 015)—May 2007 assessment. European environment agency. http://themes.eea.europa.eu/IMS/IMS/ISpecs/ISpecification20041007131746/IAssessment1152619898983/view_content. Accessed 01 July 2009 EEA-UNEP (2000) Down to earth: soil degradation and sustainable development in Europe. A challenge for the 21st century. Environmental Issues Series N. 6. EEA, UNEP, Luxembourg Ehrlich HL (1997) Microbes and metals. Appl Microbiol Biotechnol 48:687–692 Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J. Plant Nutr 15:763–782 Ensley BD, Blaylock MJ, Dushenkov S, Nanda-Kumar PBA, Kapulnik Y (1999) Inducing hyperaccumulation of metals in plant shoots. US Patent 5,917,117, 29 June Evangelou MWH, Dagan H, Schaeffer A (2004) The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57:207–213 Fellet G, Marchiol L, Perosa D, Zerbi G (2007) The application of phytoremediation technology in a soil contaminated by pyrite cinders. Ecol Eng 31:207–214 Fitter AH, Stickland TR (1991) Architectural analysis of plant root systems. 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol 118:383–389 Förstner U (1995) Land contamination by metals: global scope and magnitude of problem. In: Allen HE, Huang CP, Bailey GW, Bowers AR (eds) Metal speciation and contamination of soil. CRC Press, Boca Raton, pp 1–33 French CJ, Dickinson NM, Putwain PD (2006) Woody biomass phytoremediation of contaminated brownfield land. Environ Pollut 141:387–395 Gao Y, He J, Ling W, Hu H, Liu F (2003) Effects of organic acids on copper and cadmium desorpion from contaminated soils. Environ Int 29:613–618 Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Min Proc Einviron Protect 3:229–236 Gaweda M, Capecka E (1995) Effect of substrate pH on the accumulation of lead in radish (Raphanus sativus L. subvar. radicula) and spinach (Spinacia oleracea L.). Acta Physiol Plant 17:333–340 Giasson P, Jaouich A, Gagné S, Moutoglis P (2005) Arbuscular mycorrhizal fungi involvement in zinc and cadmium speciation change and phytoaccumulation. Remediat J 15:75–81 Grčman H, Velikonja-Bolta Š, Vodnic D, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114 Grčman H, Vodnic D, Velikonja-Bolta Š, Leštan D (2003) Ethylenediamine disuccinate as a new chelate for environmentally safe enhanced lead phytoremediation. J Environ Qual 32:500–506 Guan ZQ, Chai TY, Zhang YX, Xu J, Wei W, Han L, Cong L (2008) Gene manipulation of a heavy metal hyperaccumulator species Thlaspi caerulescens L. via Agrobacterium-mediated transformation. Mol Biotechnol 40:77–86 Hager A (2003) Role of the plasma membrane H+-ATPase in auxin-induced elongation growth: historical and new aspects. J Plant Res 116:483–505 Halim M, Conte P, Piccolo A (2003) Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52:265–275 Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613 Han YY, Zhang WZ, Zhang BL, Zhang SS, Wang W, Ming F (2009) One novel mitochondrial citrate synthase from Oryza sativa L. can enhance aluminum tolerance in transgenic tobacco. Mol Biotechnol 42:299–305 Hartley J, Caimey JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319 Hartley W, Dickinson NM, Clemente R, French C, Piearce TG, Sparke S, Lepp NW (2009) Arsenic stability and mobilization in soil at an amenity grassland overlying chemical waste (St. Helens, UK). Environ Pollut 157:847–856 Haussling M, Jorns CA, Lehmbecker G, Hecht-Buchholz C, Marschner H (1988) Ion and water uptake in relation to root development in Norway Spruce (Picea abies (L) Karst). J. Plant Physiol 133:486–491 Haynes RJ (1980) Ion exchange properties of roots and ionic interactions within the root apoplasm: their role in ion accumulation by plants. Bot Rev 46:75–99 Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa NK, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the biosynthesis of phytosiderophores. Plant Physiol 119:471–479 Hofrichter M, Steinbüchel A (2001) Biopolymers, Vol. 1. Lignin, humic substances and coal. Wiley Europe-VCH, Weinheim Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805 Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193:579–580 Jaworska JS, Schowanek D, Feijtel TCJ (1999) Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere 38:3597–3625 Kanazawa K, Higuchi K, Nishizawa NK, Fushiya S, Chino M, Mori S (1994) Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretion under Fe-deficient conditions in Gramineae. J Exp Bot 45:1903–1906 Kayser A, Wenger K, Keller A, Attinger W, Felix H, Gupta SK, Schulin R (2000) Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environ Sci Technol 34:1778–1783 King RF, Royle A, Putwain PD, Dickinson NM (2006) Changing contaminant mobility in a dredged canal sediment during a three-year phytoremediation trial. Environ Pollut 143:318–326 Kos B, Leštan D (2004) Chelator induced phytoextraction and in situ washing of Cu. Environ Pollut 132:333–339 Krishnamurti GSR, Cielinski G, Huang PM, van Rees KCJ (1997) Kinetics of cadmium release from soils as influenced by organic acid: implementation in cadmium availability. J Environ Qual 26:271–277 Kulli B, Balmer M, Krebs R, Lothenbach B, Geiger G, Schulin R (1999) The influence of nitrilotriacetate on heavy metal uptake of lettuce and ryegrass. J Environ Qual 28:1699–1705 Lagier T, Feuillade G, Matejka G (2000) Interactions between copper and organic macromolecules: determination of conditional complexation constants. Agronomie 20:537–546 Larsen PB, Degenhardt J, Tai CY, Stenzler LM, Howell SH, Kochian LV (1998) Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiol 117:19–27 Lasat MM (2002) Phytoremediation of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120 Lasat MM, Baker AJM, Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883 Li HF, Gray C, Mico C, Zhao FJ, McGrath SP (2009) Phytotoxicity and bioavailability of cobalt to plants in a range of soils. Chemosphere 75:979–986 Liphadzi MS, Kirkham MB, Paulsen GM (2006) Auxin-enhanced root growth for phytoremediation of sewage-sludge amended soil. Environ Technol 27:695–704 Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. J Environ Qual 30:1919–1926 López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61:595–598 Luo CL, Shen ZG, Li XD (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11 Luo C, Shen Z, Luo L, Li X (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144:862–871 Luo CL, Shen ZG, Li XD (2008) Hot NTA application enhanced metal phytoextraction from contaminated soil. Water Air Soil Pollut 188:127–137 Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579 MacCarthy P (2001) The principles of humic substances. Soil Sci 166:738–751 Macek T, Macková M, Pavlíková D, Száková J, Truksa M, Singh-Cundy A, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106 Marchiol L, Sacco P, Assolari S, Zerbi G (2004) Reclamation of polluted soil: phytoremediation potential of crop-related Brassica species. Water Air Soil Pollut 158:345–356 Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387 Marin AR, Masscheleyn PH, Patrick WH Jr (1992) The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil 139:175–183 McCutcheon SC, Schnoor JL (2003) Phytoremediation. Wiley, Hoboken McGrath SP (1998) Phytoextraction for soil remediation. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, pp 261–287 McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125 Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162 Meda AR, Scheuermann EB, Prechsl UE, Erenoglu B, Schaaf G, Hayen H, Weber G, von Wirén N (2007) Iron acquisition by phytosiderophores contributes to cadmium tolerance. Plant Physiol 143:1761–1773 Meers E, Hopgood M, Lesge E, Vervake P, Tack FMG, Verloo MG (2004) Enhanced phytoextraction: in search of EDTA alternatives. Int J Phytoremediat 6:95–109 Meeuseen JCL, Keizer MG, Reimsdijk WH, Haan FAM (1994) Solubility of cyanide in contaminated soil. J Environ Qual 23:785–792 Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and non-resistant plant species. New Phytol 154:29–43 Mellem JJ, Baijnath H, Odhav B (2009) Translocation and accumulation of Cr, Hg, As, Pb, Cu and Ni by Amaranthus dubius (Amaranthaceae) from contaminated sites. J Environ Sci Heal A 44:568–575 Mench M, Bussière S, Boisson J, Castaing E, Vangronsveld J, Ruttens A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249:187–202 Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect 116:278–283 Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, Meech JA (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acid. New Phytol 166:445–454 Mosca G, Vamerali T, Ganis A, Coletto L, Bona S (2004) Miglioramento dell’efficienza agronomica della fitodecontaminazione di metalli pesanti. In: Zerbi G, Marchiol L (eds) Fitoestrazione Di Metalli Pesanti—Contenimento Del Rischio Ambientale E Relazioni Suolo-Mirorganismi-Pianta. Forum Editrice Universitaria Udinese, Udine, pp 105–135 Murakami M, Ae N (2009) Potential for phytoextraction of copper, lead, and zinc by rice (Oryza sativa L.), soybean (Glycine max [L.] Merr.), and maize (Zea mays L.). J Hazard Mater 162:1185–1192 Nanda-Kumar PBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238 Navari-Izzo F, Quartacci MF (2001) Phytoremediation of metals. Tolerance mechanisms against oxidative stress. Minerva Biotec 13:73–83 Neunhäuserer C, Berreck M, Insam H (2001) Remediation of soils contaminated with molybdenum using soil amendments and phytoremediation. Water Air Soil Pollut 128:85–96 Pajuelo E, Carrasco JA, Romero LC, Chamber MA, Gotor C (2007) Evaluation of the metal phytoextraction potential of crop legumes. Regulation of the expression of O-acetylserine (thiol)lyase under metal stress. Plant Biol 9:672–681 Pavlikova D, Macek T, Mackova M, Sura M, Szakova J, Tlustos P (2004) The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ 50:513–517 Pellet MD, Grunes DL, Kochian LV (1995) Organic acid exudation as an aluminium tolerance mechanism in maize (Zea mays L.). Planta 196:788–795 Pirbazari M, Badriyha BN, Ravindran V, Kim S (1989) Treatment of landfill leachate by biologically active carbon adsorbers. In: Bell JM (ed) Proceedings of 44th annual Purdue conference on industrial wastes. Lewis Publishers, Chelsea, pp 555–563 Pizzeghello D, Nicolini G, Nardi S (2000) Hormone-like activities of humic substances in different forest ecosystems. New Phytol 155:393–402 Prasad MNV, De Oliveira-Freitas HM (2003) Metal hyperaccumulation in plants—Biodiversity prospecting for phytoremediation technology. Electr J Biotech 6:285–321 Probst A, Liu H, Fanjul M, Liao B, Hollande E (2009) Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot 66:297–308 Quartacci MF, Cosi E, Meneguzzo S, Sgherri C, Navari-Izzo F (2003) Uptake and translocation of copper in Brassicaceae. J Plant Nutr 26:1065–1083 Quartacci MF, Baker AJM, Navari-Izzo F (2005) Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59:1249–1255 Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925 Quartacci MF, Irtelli B, Baker AJM, Navari-Izzo F (2007) The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata. Chemosphere 68:1920–1928 Raskin I (1996) Plant genetic engineering may help with environmental cleanup. Proc Natl Acad Sci USA 93:3164–3166 Raskin I, Kumar PBAN, Dushenkov S, Salt D (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290 Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–230 Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial gamma-glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremediat 10:440–454 Rizzi L, Petruzelli G, Poggio G, Vigna Guidi G (2004) Soil physical changes and plant availability of Zn and Pb in a treatability test of phytostabilization. Chemosphere 57:1039–1046 Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997a) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126 Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, DeDominicis V (1997b) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86 Robinson BH, Meblanc L, Petit D, Broks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56 Ruley AT, Sharma NC, Sahi SV, Singh SR, Sajwan KS (2006) Effects of lead and chelators on growth, photosynthetic activity and Pb uptake in Sesbania drummondii grown in soil. Environ Pollut 144:11–18 Salt DE, Kramer U (2000) Mechanisms of metal hyperaccumulation in plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 231–246 Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668 Sappin-Didier V, Vansuyts G, Mench M, Briat JF (2005) Cadmium availability at different soil pH to transgenic tobacco overexpressing ferritin. Plant Soil 270:189–197 Schmidt U (2003) Enhancing phytoextraction: the effect of chemical soil manipulation on mobility, plant accumulation, and leaching of heavy metals. J Environ Qual 32:1939–1954 Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323 Schowanek D, Feijtel TCJ, Perkins CM, Hartman FA, Federle TW, Larson RJ (1997) Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere 34:2375–2391 Schwartz C, Morel JL, Saumier S, Whiting SN, Baker AJM (1999) Root development of the zinc hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localisation in soil. Plant Soil 208:103–115 Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042 Soriano AM, Fereres E (2003) Use of crops for in situ phytoremediation of polluted soils following a toxic flood from a mine spill. Plant Soil 256:253–264 Sun B, Zhao FJ, Lombi E, McGrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120 Suthersan SS (1997) Remediation engineering: design concepts. CRC Press/Lewis Publishers, Boca Raton Sutton P, Dick WA (1987) Reclamation of acidic mined lands in humid areas. Adv Agron 41:377–406 Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944 Tandy S, Schulin R, Nowack B (2006) Uptake of metals during chelant-assisted phytoextraction with EDDS related to the solubilized metal concentration. Environ Sci Technol 40:2753–2758 Tanton TW, Crowdy SH (1971) The distribution of lead chelate in the transpirational stream of higher plants. Pestic Sci 2:211–213 Tassi E, Pouget J, Petruzzelli G, Barbafieri M (2008) The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Chemosphere 71:66–73 Taub DR, Goldberg D (1996) Root system topology of plants from habitats differing in soil resource availability. Funct Ecol 10:258–264 Terry N, Bañuelos GS (2000) Phytoremediation of contaminated soil and water. CRC Press, Lewis Publ, Boca Raton The Conservation Foundation (1987) State of the environment: a view toward the nineties. The Conservation Foundation, Washington, DC Tiwari KK, Dwivedi S, Singh NK, Rai UN, Tripathi RD (2009) Chromium (VI) induced phytotoxicity and oxidative stress in pea (Pisum sativum L.): biochemical changes and translocation of essential nutrients. J Environ Biol 30:389–394 Tode K, Hartwig L (2001) Fusicoccin- and IAA-induced elongation growth share the same pattern of K+ dependence. J Exp Bot 52:251–255 Tomsett AB, Sewell AK, Jones SJ, Miranda JR, de Thurman DA (1992) Metal-binding proteins and metal-regulated gene expression in higher plants. In: Wray JL (ed) Inducible plant proteins: their biochemistry and molecular biology. Cambridge University Press, Cambridge, pp 1–24 Trewavas AJ (2000) Signal perception and transduction. In: Buchannan B, Gruisem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiology, USA, pp 930–988 Vamerali T, Bandiera M, Coletto L, Zanetti F, Dickinson NM, Mosca G (2009) Phytoremediation trials on metal- and arsenic-contaminated pyrite wastes (Torviscosa, Italy). Environ Pollut 157:887–894 Van der Lelie D, Schwitzgübel JP, Glass DJ, Vangronsveld J, Baker AJM (2001) Assessing phytoremediation progress in the United States and Europe. Environ Sci Technol 35:446–452 Vandevivere P, Saveyn H, Verstraete W, Feijtel TCJ, Schowanek D (2001) Biodegradation of metal-[S,S]-EDDS complexes. Environ Sci Technol 35:1765–1770 Vangronsveld J, Assche FV, Clijsters H (1995) Reclamation of a bare industrial area contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59 Visoottiviseth P, Francesconi K, Sridokchan V (2002) The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environ Pollut 118:453–461 Wallace A, Mueller RT, Wood RA (1980) Arsenic phytotoxicity and interactions in bush bean plants grown in solution culture. J Plant Nutr 2:111–113 Wang QR, Liu XM, Cui YS, Dong YT, Christie P (2002) Response of legume and non-legume crop species to heavy metals in soils with multiple metal contamination. J Environ Sci Health 37:611–621 Wang F, Lin X, Yin R (2005) Heavy metal uptake by arbuscular mycorrhizas of Elsholtzia splendens and the potential for phytoremediation of contaminated soil. Plant Soil 269:225–232 Ward TE (1986) Aerobic and anaerobic biodegradation of nitrilotriacetate in subsurface soils. Ecotox Environ Safe 11:112–125 Wenger K, Gupta SK, Furrer G, Schulin R (2003) The role of nitrilotriacetate in copper uptake by tobacco. J Environ Qual 32:1669–1676 Whiting SN, Leake JR, McGrath SP, Baker AJM (2000) Positive response to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol 145:199–210 Wong MH (2003) Ecological restoration of degraded soils with emphasis on metal contaminated soils. Chemosphere 50:775–780 Wu LH, Luo YM, Christie P, Wong MH (2003) Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere 50:819–822 Wu LH, Sun XF, Luo YM, Xing XR, Christie P (2007) Influence of [S, S]-EDDS on phytoextraction of copper and zinc by Elsholtzia splendens from metal-contaminated soil. Int J Phytorem 9:227–241 Ye ZH, Wong JWC, Wong MH, Lan CY, Baker AJM (1999) Lime and pig manure as ameliorants for revegetating lead/zinc mine tailings: a greenhouse study. Bioresour Technol 69:35–43 Yoon J, Cao X, Zhou O (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464 Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant Soil 249:139–156