Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lọc Sợi Để Bảo Vệ Môi Trường Tòa Nhà Trước Các Tác Nhân Ô Nhiễm: Một Bản Đánh Giá
Tóm tắt
Bài báo này thảo luận về việc sử dụng bộ lọc sợi để bảo vệ môi trường tòa nhà khỏi các tác nhân ô nhiễm trong không khí, đặc biệt là các tác nhân hóa học, sinh học và phóng xạ được đặc biệt quan tâm. Quá trình lọc không khí bao gồm việc loại bỏ các hạt từ không khí và khí độc từ không khí. Trong quá trình lọc không khí, các hạt chủ yếu là các tác nhân sinh học và phóng xạ có thể được loại bỏ bằng cách sử dụng các bộ lọc cơ khí và tĩnh điện. Một số tác nhân sinh học không thể bị loại bỏ chỉ bằng quá trình lọc không khí cần các kỹ thuật đặc biệt như lớp hoàn thiện kháng khuẩn, chất diệt khuẩn UV, bộ lọc được phủ, v.v. Chất diệt khuẩn có thể được thêm vào chính sợi thông qua phản ứng grafting để mang lại hoạt tính kháng khuẩn. Các tác nhân hóa học như khí độc có thể được loại bỏ bằng cách tích hợp các chất hấp phụ và chất sorbent trong bộ lọc hoặc bằng cách biến đổi sợi. Cũng có thể impart các tính chất chuyển đổi xúc tác vào sợi để loại bỏ các khí dễ bay hơi. Các tác nhân phóng xạ có thể được loại bỏ bằng bộ lọc hạt nếu hiện diện dưới dạng aerosol hoặc bằng cách làm sạch khí bằng cách sử dụng chất lót sợi cụ thể.
Từ khóa
#bộ lọc sợi #ô nhiễm không khí #tác nhân hóa học #tác nhân sinh học #tác nhân phóng xạ #lọc không khíTài liệu tham khảo
J. Howard, Guidance for Filtration and Air-Cleaning. Department of Health and Human Services, Cincinnati, Department of Health and Human Services (DHHS) National Institute for Occupational Safety and Health (NIOSH) Publication no. 2003-136 (2003)
A.D. Maynard, D.Y.H. Pui, Nanoparticles and Occupational Health (Springer, New York, 2007), p. 186
P. Bajaj, A.K. Sengupta, Industrial applications of textiles: textiles for filtration and coated fabrics. Text. Prog. 14, 7–8 (1985)
TechSci Research report, Global Air Filters Market Forecast & Opportunities, 2020 (2015)
Gupta S, INDIA—Nonwoven and Woven Fabrics for Filtration (Dry and Liquid Filtration), Forecast 2010–2014 (2010)
R.L. Irvine, Chemical/Biological/Radiological Incident Handbook. Central Intelligence Agency (1998), Available from: https://www.cia.gov/library/reports/general-reports-1/cbr_handbook/cbrbook.htm
U.S. Department of Justice, An Introduction to Biological Agent Detection Equipment for Emergency First Responders. NIJ Guide 101-00 (2001)
Federal Emergency Management Agency, Chemical, Biological and Radiological Measures, Washington, chapter 5. 5.1–5.15 (2001)
E. Švábenská, Systems for detection and identification of biological aerosols. Def. Sci. J 62, 404–411 (2012)
U.S. Department of Justice, Guide for the selection of Chemical Agent and Toxic Industrial Material Detection Equipment for Emergency First Responders. NIJ Guide 100-00 (2000)
W.C. Hinds, Aerosol technology: properties, Behavior, and Measurement of Airborne Particles (Wiley, New York, 1982)
F.M. Veazie, W. H. Kielmeyer, Feasibility of fabric filter as gas-solid contractor to control gaseous pollutants. Department of Health, Education and Welfare U.S (1970)
A. Mukhopadhyay, Composite nonwovens in filters: Part I Filtration Mechanism and Characteristics requirements of Nonwovens as Filter in Composite nonwoven materials: Design, development and applications (Woodhead Publishing Limited, Elsevier, Cambridge, 2014), pp. 120–163
Donaldson Company, Inc. USA, High Efficiency Particulate Air, Hepa Filtration Facts, Available from: www.donaldson.com/en/aircraft/support/…/042665.pdf. Accessed 5 Mar 2013
I. Hutten, Handbook of Nonwoven Filter Media. (Elsevier Science & Technology, New York, 2007), pp. 325–367
Wikipedia (2015) HEPA, Available from: https://en.wikipedia.org/wiki/HEPA. Accessed 5 Aug 2015]
H. Mrozewska, T. Robakowska, W. Krzywanski, Tech. Wlok. 28, 237 (1979)
S. Zhang, W.S. Shim, J. Kim, Mater. Des. 30, 3659–3666 (2009)
C.H. Hung, W.W. Leung, Design of ultra-fine nonwovens via electrospinning of nylon 6: spinning parameters and filtration efficiency. Sep. Purif. Technol. 79, 34–42 (2011)
R.A. Fjeld, T.M. Ownes, The effect of particle charge on penetration in an electret filter. IEEE Trans. Ind. Appl. 24, 4 (1988)
N.L. Lifshutz, Performance decay in synthetic electret filter media. AFSS Conf. Adv. Filtr. Sep. Technol. 11, 307–311 (1997)
K. Ando, M. Takahashi, R. Togashi, Y. Okumara, Properties of electret filter with low pressure drop and high collection efficiency. Proceedings o f 3rd International Aerosol Conference, Kyoto (Pergamon Press, Oxford, 1990)
H. Baumgartner, F. Loeffler, M. Umhauer, Deep-bed electret filters: The determination of single fibre charge and collection efficiency. IEEE Trans. 3, 477–486 (1985)
R.C. Brown, Air Filtration: an Integrated Approach to the Theory and Application of Fibrous Filter (Pergamon Press, Oxford, 1993)
K. Schmidt, Manufacture and use of felt pads made from extremely fine fibres for filtering purposes. Melliand Textilber. 61, 495–497 (1980)
I. Krucinska, S. Zakrzewski, J. Kot, A. Brochocka, Badania nad otrzymywaniem wysokoskutecznych materialow filtracyjnych [Investigations on manufacturing high efficiency filtering materials], Przeglqd Wlokienniczy, 49(A), 25–27 (1995)
I. Krucinska, S. Zakrzewski, J. Kot, A. Brochocka, Investigations of blended fibre filtering materials. Int. J Occup. Saf. Ergon. 3(3–4), 141–149 (1997)
A. Brochocka, K. Majchrzycka, K. Makowski, Modified melt-blown nonwovens for respiratory protective devices against nanoparticles. Fibres Text. East. Eur. 21, 106–111 (2013)
P.P. Tsai, Larry C. Wadsworth, Electro-static charging of melt blown webs for high-efficiency air filters. Adv. Filtr. Sep. Technol. Am. Filtr. Sep. So-c. 9, 473 (1995)
Peter P. Tsai, L.C. Wadsworth, Air Filtration Improved by Electrostatically Charging Fibrous Materials. Part. Sci. Technol. 12, 323–332 (1994)
M. Technostat, Technostat Electrostatic Filte Media (2012), Available from: http://www.hollingsworth-vose.com/Documents/Product%20Literature-Filtration/Technostat%20Electrostatic%20Filter%20Media.pdf
A.G. Bayer, W. Simm, et al. Filter made of electrostatically spun fibres. U.S. Patent 4,069,026 (1978)
“Filtrete home filtration products”, 3M product broacher. www.filtrete.com
S.G. Terjesen, G.B. Cherry, The removal of microorganisms from air by filtration. Trans. Inst. Chem. Eng. 25, 89–96 (1947)
H.F. Allen, Air hygiene for hospitals II efficiency of fibrous filters against staphylococci droplet nuclei and bacteria-bearing dust. J. Am. Med. Assoc. 170, 261–267 (1959)
H.M. Decker, F.A. Geile, H.E. Moorman, C.A. Glick, Removal of bacteria and bacteriophage from the air by electrostatic precipitators and spun glass filter pads. J. Am. Soc. Heat. Ventilat. Eng. 23, 125–128 (1951)
K. Majchrzycka, B. Gutarowska, A. Brochocka, B. Bogumit, New filtering antimicrobial nonwovens with various carriers for biocides as respiratory protective materials against bioaerosol. Int. J. Occup. Saf. Ergon. 18(3), 375–385 (2012)
Z. Żakowska, Microbial biodegradation and biodeterioration of technical materials. IV Scientific Conference: Łódź, 12–15 (2006)
T. Jesionowski, A. Kołodziejczak-Radzimska, F. Ciesielczyk, J. Sójka-Ledakowicz, J. Olczyk, J. Sielski, synthesis of zinc oxide in an emulsion system and its deposition on PES nonwoven fabrics. Fibres Text. East. Eur. 19, 70–75 (2011)
J. Sójka-Ledakowicz, J. Lewartowska, M. Kudzin, T. Jesionowski, K. Siwińska-Stefańska, A. Krysztafkiewicz, Modification of textile materials with micro-and nano-structural metal oxides. Fibres Text. East. Eur. 16, 112–116 (2008)
D.R. Patel, K.C. Patel, Synthesis, antimicrobial activity and application of some novel quinazolinone based monoazo reactive dyes on various fibres. Dyes Pigm. 90, 1–10 (2011)
Ciba specialty chemicals (2001), Polymer Additives
S.W. Foss, D. Keser, D. Tefft, et al., Antimicrobial fibre and fibrous products.US Patent 6,723,428 (2004)
A. Brochocka, K. Majchrzycka, Technology for the production of bioactive melt-blown filtration materials applied to respiratory protective devices. Fi-bres Text. East. Eur. 17(5), 92–98 (2009)
C. Liu, X. Jin, Gang Sun. (2010) Antibacterial Melt Blown PP -g –NDAM Nonwoven. STAMP 2010
R.D. Rohrbach, P.D. Unger, G.W. Jones, Anti-Microbial Fibrous Media. US Patent 6,514,306 B1 (2003)
H.J. Lee, S.H. Jeong, Bacteriostasis of nanosized colloidal silver on polyester nonwovens. Text. Res. J. 74, 442–447 (2004)
B. Gutarowska, J. Skóra, E. Nowak, I. Łysiak, M. Wdówka, Antimicrobial activity and filtration effectiveness of nonwovens with sanitized for respiratory protective equipment. Fi-bres Text. East. Eur. 22, 120–125 (2014)
E. Kujundzic, F. Matalkah, C.J. Howard, M. Hernandez, S.L. Miller, UV air cleaners and upper-room air ultraviolet germicidal irradiation for controlling airborne bacteria and fungal spores. J. Occup. Environ. Hyg. 3, 536–546 (2006)
O.V. Pyankov, I.E. Agranovski, R. Huang, B.J. Mullins, Removal of biological aerosols by oil coated filters. Clean 36(7), 609–614 (2008)
B,Y. Sou, R.C. McMillan, S.M. Causer, Absorption of Formaldehyde by Carpets. Report R219, Wool Research Organisation of New Zealand, WRONZ (2001)
S. Solanki, N. Grover et al., Enzyme-Based Listericidal Nanocomposites. Scientific Reports 3, Article no. 1584 (2013)
Azonano News (2013) Cell lytic enzymes attached to food-safe silica nanoparticles demonstrate ability to kill listeria
S. Levy, Get Ready For Light Activated Antimicrobials, Nonwoven Industr (2010), Available from: http://www.nonwovens-industry.com/issues/2010-10/view_online-exclusives/online-exclusive-get-ready-for-light-activate-60560
Texel (2012) Texel: Leaders in Air, Liquid and Bio-filtration, Nonwoven Industry, Available from: http://www.nonwovens-industry.com/contents/view_breaking-news/2012-11-15/texel-leaders-in-air-liquid-and-bio-filtration
Precision Air (Flanders) Air Filters. product guide http://www.furnacecompare.com/filters/precision-aire.html. Accessed 10 Novr 2013)
R.Y. Raskar, A.G. Gaikwad, The uses of copper and zinc aluminates to cap-ture and convert carbon dioxide to syn-gas at higher temperature. Bull. Chem. React. Eng. Catal. 9(1), 1–15 (2014)
G. Unger, J. Hruza, Nanofibrous filtering materials with catalytic activity. Adv. Mat. Lett. 5(8), 422–428 (2014)
M.A. Daley, M.A. Daley, C.L. Mangun, J.A. DeBarrb, S. Riha, A.A. Lizzio, G.L. Donnals, Adsorption of SO2 on to oxidised and heat treated active carbon fibres. J. Econ. Carbon 35, 411–417 (1997)
I. Mochida, Y. Kawabuchi, S. Kawano, Y. Mastsumura, M. Yoshikawa, High catalytic activity of pitch based activated carbon fibres of moderate surface area for oxidation of NO and NO2. Fuel 76, 543–548 (1997)
S.M. Causer, Absorption of Nitrogen Dioxide by Carpet. WRONZ Report R204 (1993)
Cerex advanced fabric, product guide. www.cerex.com/zones/org1/uploads/products_book.pdf. Accessed April 2015
S.S. Ramkumar, Fibertect® decontaminates nerve gas surrogate in lab testing. Indian Tex. J. 123(7), 85 (2013)
W.X. Chen, S.F. Lu, Y.Y. Yao et al., Copper (II)-silk fibroin complex fibers as air-purifying materials for removing ammonia. Text. Res. J. 75, 326 (2005)
A.I. Valikh, et al., B.P. 1.553, 052 (1979)
A.A Morozova, Vesti. Akad. Navuk, USSR. Ser. Khim. Navuk, 2, 36 (1978)
S.M. Manocha, Porous carbons. Sadhana 28, 335–348 (2003)
R.B. Quincy, Activated Carbon Substrates. U.S. Patent 8,168,852 (2012)
Lewcott Chemicals and Plastics (1980) Nonwoven Industr; 11, (7) 8,
J.E. Koresh, A. Soffer, molecular sieve carbon permselective membrane, part I: presentation of a new device for gas mixture separation. Sep. Sci. Technol. 18, 723–734 (1983)
V. Linkov, R.D. Sanderson, E.P. Jacobs, Scanning probe microscopy study of carbon membrane surface. J. Mater. Sci. Lett. 13, 600–601 (1994)
S.P.J. Smith, V.M. Linkov, R.D. Sanderson, L.F. Petrik, C.T. O’Connor, K. Keiser, Preparation of hollow-fibre composite carbon-zeolite membranes. Microporous Mater. 4, 385–390 (1995)
International Atomic Energy Agency (1989) Retention of Iodine and other Airborne Radionuclides in Nuclear Facilities during abnormal and accident conditions. Vienna Austria, IAEA-TECDOC-521,
G.W. Brassell, R.P. Brugger, Bonded Carbon or Ceramic Fiber Composite Filter Vent For Radioactive Waste. U.S. Patent, 4500328 (1985)
A.V. Obruchikov, S.M. Lebedev, Study on removal of radioactive methyl iodide by modified Busofit carbon fibre. Inorg. Mater.: Appl. Res. 3, 398–400 (2012)
K. Ramarathinam, S. Kumar, K.G. Gandhi, S. Ramachandran, Evaluation of high efficiency particulate air (HEPA) and iodine filters under high temperature, humidity and radiation. IAEA-TECDOC-521 4, 113–142 (1989)
M. Inoue, I. Miyazaki, Filter for Removing Radioactive Substance and Filter unit employing the same. E P Patent 1 868 209 A1 (2007)
Creating Clean Air, A product guide. VOKES Air, http://www.vokesair.com. Accessed 01 April 2014)
V.M. Nakano, W.J. Croisant, Design Assessment using Multizone Simulation to Protect Critical Infrastructure from Internal Chemical and Biological Threats. Purdue University West Lafayette, Indiana, OMB No. 0704-0188 (2006)
W. Kowalski, W. Bahnfleth, A. Musser, Modeling immune building systems for bioterrorism defense. J. Arch. Eng. 9, 86–96 (2003)