Fibre Optic Silver Plasmonic U-Bent Real Time Sensing Response to Accelerated Protein Conformation Kinetics

V. C. Priyamvada1, Sony Udayan, E. S. Bindiya, Sheenu Thomas, Sarita G. Bhat, P. Radhakrishnan
1Cochin University of Science and Technology

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wood, R. W. (1902). On a remarkable case of uneven distribution of light in a diffraction grating spectrum. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 4, 396–402. https://doi.org/10.1080/14786440209462857

Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108(2), 462–493. https://doi.org/10.1021/cr068107d

Miyazaki, C. M., Shimizu, F. M., & Ferreira, M. (2017). Surface plasmon resonance (SPR) for sensors and biosensors. Nanocharacterization techniques (pp. 183–200). William Andrew Publishing. https://doi.org/10.1016/B978-0-323-49778-7.00006-0

Prabowo, B. A., Purwidyantri, A., & Liu, K. C. (2018). Surface plasmon resonance optical sensor: A review on light source technology. Biosensors (Basel), 8(3), 80. https://doi.org/10.3390/bios8030080

Chou Chau, Y. F., Ming, T. Y., Chou Chao, C. T., et al. (2021). Significantly enhanced coupling effect and gap plasmon resonance in a MIM-cavity based sensing structure. Science and Reports, 11, 18515. https://doi.org/10.1038/s41598-021-98001-z

Chou Chao, C. T., Chou Chau, Y. F., & Chiang, H. P. (2021). Biosensing on a plasmonic dual-band perfect absorber using intersection nanostructure. ACS Omega, 7(1), 1139–1149. https://doi.org/10.1021/acsomega.1c05714

Zhou, B., Xiao, X., Liu, T., Gao, Y., Huang, Y., & Wen, W. (2016). Real-time concentration monitoring in microfluidic system via plasmonic nanocrescent arrays. Biosensors & Bioelectronics, 77, 385–392. https://doi.org/10.1016/j.bios.2015.09.054

Polley, N., Basak, S., Hass, R., & Pacholski, C. (2019). Fiber optic plasmonic sensors: Providing sensitive biosensor platforms with minimal lab equipment. Biosensors and Bioelectronics, 132, 368–374. https://doi.org/10.1016/j.bios.2019.03.020

Gupta, B. D., Shrivastava, A. M., & Usha, S. P. (2016). Surface plasmon resonance-based fiber optic sensors utilizing molecular imprinting. Sensors, 16, 1381. https://doi.org/10.3390/s1609138

Esfahani Monfared, Y. (2020). Overview of recent advances in the design of plasmonic fiber-optic biosensors. Biosensors, 10(7), 77. https://doi.org/10.3390/bios10070077

Wang, X.-D., & Wolfbeis, O. S. (2020). Fibre-optic chemical sensors and biosensors (2015–2019). Analytical Chemistry, 92, 397–430. https://doi.org/10.1021/acs.analchem.9b04708

Wen, H.-Y., Hsu, H.-C., Tsai, Y.-T., Feng, W.-K., Lin, C.-L., & Chiang, C.-C. (2021). U-shaped optical fibre probes coated with electrically doped GQDs for humidity measurements. Polymers, 13, 2696. https://doi.org/10.3390/polym13162696

Gupta, B. D., & Srivastava, S. K. (2015). Fibre optic sensors based on plasmonics. World Scientific.

Shukla, G. M., Punjabi, N., Kundu, T., & Mukherji, S. (2019). Optimization of plasmonic U-shaped optical fiber sensor for mercury ions detection using glucose capped silver nanoparticles. IEEE Sensors Journal. https://doi.org/10.1109/JSEN.2019.2893270

Okuda, H., Wang, T., & Lee, S. W. (2017). Selective methanol gas detection using a U-bent optical fiber modified with a silica nanoparticle multilayer. Electronics and Communications in Japan. https://doi.org/10.1002/ecj.11933

Hill, S. E., Robinson, J., Matthews, G., & Muschol, M. (2009). Amyloid protofibrils of lysozyme nucleate and grow via oligomer fusion. Biophysical Journal, 96(9), 3781–3790. https://doi.org/10.1016/j.bpj.2009.01.044

Cao, A., Daoying, Hu., & Lai, L. (2004). Formation of amyloid fibrils from fully reduced hen egg white lysozyme. Protein Science, 13(2), 319–324. https://doi.org/10.1110/ps.03183404

Engen, J. R. (2009). Analysis of protein conformation and dynamics by hydrogen/deuterium exchange MS. Analytical Chemistry, 81(19), 7870–7875. https://doi.org/10.1021/ac901154s

Lindgren, M., Sörgjerd, K., & Hammarström, P. (2005). Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy. Biophysical Journal, 88(6), 4200–4212. https://doi.org/10.1529/biophysj.104.049700

Yunfei, Hu., Cheng, K., Lichun He, Xu., Zhang, B. J., Jiang, L., Li, C., Wang, G., Yang, Y., & Liu, M. (2021). NMR-based methods for protein analysis. Analytical Chemistry, 93(4), 1866–1879. https://doi.org/10.1021/acs.analchem.0c03830

Šrajer, V., & Schmidt, M. (2017). Watching proteins function with time-resolved X-ray crystallography. Journal of Physics D: Applied Physics. https://doi.org/10.1088/1361-6463/aa7d32

Mohammadi, F., Mahmudian, A., Moeeni, M., & Hassani, L. (2016). Inhibition of amyloid fibrillation of hen egg-white lysozyme by the natural and synthetic curcuminoids. RSC Advances, 6, 23148. https://doi.org/10.1039/C5RA18992F

Egorov, V., Grudinina, N., Vasin, A., & Lebedev, D. (2015). Peptide-induced amyloid-like conformational transitions in proteins. International Journal of Peptides, 2015, e723186. https://doi.org/10.1155/2015/723186

Chaari, A., Fahy, C., Chevillot-Biraud, A., & Rholam, M. (2015). Insights into kinetics of agitation-induced aggregation of hen lysozyme under heat and acidic conditions from various spectroscopic methods. PLoS ONE. https://doi.org/10.1371/journal.pone.0142095

Konar, M., Mathew, A., & Dasgupta, S. (2019). Effect of silica nanoparticles on the amyloid fibrillation of lysozyme. ACS Omega, 4, 1015–1026.

Chen, X., Deng, X., Han, X., Liang, Y., Meng, Z., Liu, R., Wenqiang, Su., Zhu, H., & Tingming, Fu. (2021). Inhibition of lysozyme amyloid fibrillation by silybin diastereoisomers: The effects of stereochemistry. ACS Omega, 6, 3307–3318. https://doi.org/10.1021/acsomega.0c05788

Verma, R. K., & Gupta, B. D. (2008). Theoretical modelling of a bi-dimensional U-shaped surface plasmon resonance based fibre optic sensor for sensitivity enhancement. Journal of Physics. D. Applied Physics, 41, e095106. https://doi.org/10.1088/0022-3727/41/9/095106

Tan, A. J. Y., Ng, S. M., Stoddart, P. R., & Chua, H. S. (2020). Theoretical model and design considerations of U-shaped fiber optic sensors: A review. IEEE Sensors Journal, 20(24), 14578–14589. https://doi.org/10.1109/JSEN.2020.3011173

Moorthy, R. S., Rondla, R., Kavitha, M., Bindu, P. H., Pasha, C., & Reddy, P. M. (2021). Potential applications of nanoparticles embedded U-bent fiber optic probe. AIP Conference Proceedings, 2369, 020035. https://doi.org/10.1063/5.0060856

Zainuddin, N. A. M., Ariannejad, M. M., Arasu, P. T., Harun, S. W., & Zakaria, R. (2019). Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. Results in Physics, 13, e102255. https://doi.org/10.1016/j.rinp.2019.102255

Chau, Y. F. C., Jiang, J. C., Chao, C. T. C., Chiang, H. P., & Lim, C. M. (2016). Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. Journal of Physics D: Applied Physics, 49, 475102.

Xue, C., Lin, T. Y., Chang, D., & Guo, Z. (2017). Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science, 4, 160696. https://doi.org/10.1098/rsos.160696

Qin, Z., Sun, Y., Jia, B., Wang, D., Ma, Y., & Ma, G. (2017). Kinetic mechanism of Thioflavin T binding onto the amyloid fibril of Hen Egg White Lysozyme. Langmuir, 33(22), 5398–5405. https://doi.org/10.1021/acs.langmuir

Michaels, T. C. T., Yde, P., Willis, J. C. W., Jensen, M. H., Otzen, D., Dobson, C. M., Buell, A. K., & Knowles, T. P. J. (2015). The length distribution of frangible biofilaments. The Journal of Chemical Physics. https://doi.org/10.1063/1.4933230

Islam, Z., Ali, M. H., Popelka, A., Mall, R., Ullah, E., Ponraj, J., & Kolatkar, P. R. (2021). Probing the fibrillation of lysozyme by nanoscale-infrared spectroscopy. Journal of Biomolecular Structure and Dynamics, 39(4), 1481–1490. https://doi.org/10.1080/07391102.2020.1734091

Frare, E., de Laureto, P. P., Zurdo, J., Dobson, C. M., & Fontana, A. (2004). A highly amyloidogenic region of hen lysozyme. Journal of Molecular Biology, 340(5), 1153–1165. https://doi.org/10.1016/j.jmb.2004.05.056

Tan, A. J. Y., Ng, S. M., Stoddart, P. R., & Chua, H. S. (2020). Theoretical model and design considerations of U-shaped fibre optic sensors: A review. IEEE Sensors Journal, 20(24), 14578–14589. https://doi.org/10.1109/JSEN.2020.3011173

Wang, X., Herting, G., Wallinder, I. O., & Blomberg, E. (2015). Adsorption of bovine serum albumin on silver surfaces enhances the release of silver at pH neutral conditions. Physical Chemistry Chemical Physics, 17, e18524. https://doi.org/10.1039/C5CP02306H

Ou, X., Liu, Y., Zhang, M., et al. (2021). Plasmonic gold nanostructures for biosensing and bioimaging. Microchimica Acta, 188, 304. https://doi.org/10.1007/s00604-021-04964-1

Kapoor, V., & Sharma, N. K. (2022). Effect of oxide layer on the performance of silver based fiber optic surface plasmon resonance sensor. Optical and Quantum Electronics, 54, 475. https://doi.org/10.1007/s11082-022-03873-8

Fathi, F., Jalili, R., Amjadi, M., & Rashidi, M. R. (2019). SPR signals enhancement by gold nanorods for cell surface marker detection. BioImpacts: BI, 9(2), 71–78. https://doi.org/10.15171/bi.2019.10

Voros, J. (2004). The density and refractive index of adsorbing protein layers. Biophysical Journal, 87(1), 553–561. https://doi.org/10.1529/biophysj.103.030072

Chau, Y.-F., Yeh, H.-H., & Tsai, D. P. (2010). Surface plasmon resonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs. Journal of Electromagnetic Waves and Applications, 24(8–9), 1005–1014. https://doi.org/10.1163/156939310791586098

Chou Chao, C. T., Chou Chau, Y. F., & Chiang, H. P. (2020). Enhancing plasmonic effect in periodic nanometal square prisms with fences and cavities for refractive index and temperature sensing applications. Journal of Nanoparticle Research, 22, 297. https://doi.org/10.1007/s11051-020-05023-1

Khago, D., Bierma, J. C., Roskamp, K. W., Kozlyuk, N., & Martin, R. W. (2018). Protein refractive index increment is determined by conformation as well as composition. Journal of Physics: Condensed Matter, 30(43), 435101. https://doi.org/10.1088/1361-648X/aae000

Podstawka, E., Ozaki, Y., & Proniewicz, L. M. (2004). Adsorption of S—S containing proteins on a colloidal silver surface studied by surface-enhanced Raman spectroscopy. Applied Spectroscopy., 58(10), 1147–1156. https://doi.org/10.1366/0003702042336073

Byler, D., & Susi, H. (1986). Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 25, 469–487. https://doi.org/10.1002/bip.360250307

Frare, E., Mossuto, M. F., de Laureto, P. P., Tolin, S., Menzer, L., Dumoulin, M., Dobson, C. M., & Fontana, A. (2009). Characterization of oligomeric species on the aggregation pathway of human lysozyme. Journal of Molecular Biology, 387, 17–27. https://doi.org/10.1016/j.jmb.2009.01.049

Zou, Y., Li, Y., Hao, W., Hu, X., & Ma, G. (2013). Parallel β-sheet fibril and anti-parallel β-sheet oligomer: New insights into amyloid formation of Hen Egg White Lysozyme under heat and acidic condition from FTIR spectroscopy. The Journal of Physical Chemistry B, 117, 4003–4013. https://doi.org/10.1021/jp4003559

Krimm, S., & Bandekar, J. (1986). Vibrational spectroscopy and conformation of peptides, polypeptides and proteins. Advances in Protein Chemistry, 38, 181–364. https://doi.org/10.1016/s0065-3233(08)60528-8