Fiber-optic fluorescence imaging

Nature Methods - Tập 2 Số 12 - Trang 941-950 - 2005
Benjamin A. Flusberg1, Eric Cocker1, Wibool Piyawattanametha1, Juergen C Jung1, Eunice L.-M. Cheung1, Mark J. Schnitzer1
1James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, 318 Campus Drive, Stanford, 94305, California, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Helmchen, F., Fee, M.S., Tank, D.W. & Denk, W. A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals. Neuron 31, 903–912 (2001).

Monfared, A. et al. In vivo imaging of mammalian cochlear blood flow using fluorescence microendoscopy. Otol. Neurotol. (in the press).

Bashford, C.L., Barlow, C.H., Chance, B., Haselgrove, J. & Sorge, J. Optical measurements of oxygen delivery and consumption in gerbil cerebral cortex. Am. J. Physiol. 242, C265–C271 (1982).

Chance, B., Cohen, P., Jobsis, F. & Schoener, B. Intracellular oxidation-reduction states in vivo. Science 137, 499–508 (1962).

Mayevsky, A. & Chance, B. Intracellular oxidation-reduction state measured in situ by a multichannel fiber-optic surface fluorometer. Science 217, 537–540 (1982).

Epstein, J.R. & Walt, D.R. Fluorescence-based fibre optic arrays: a universal platform for sensing. Chem. Soc. Rev. 32, 203–214 (2003).

Yamaguchi, S. et al. View of a mouse clock gene ticking. Nature 409, 684 (2001).

Bird, D. & Gu, M. Fibre-optic two-photon scanning fluorescence microscopy. J. Microsc. 208, 35–48 (2002).

Ghiggino, K.P., Harris, M.R. & Spizzirri, P.G. Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope. Rev. Sci. Instrum. 63, 2999–3002 (1992).

Dabbs, T. & Glass, M. Fiber optic confocal microscope: FOCON. Appl. Opt. 31, 3030–3035 (1992).

Bird, D. & Gu, M. Compact two-photon fluorescence microscope based on a single-mode fiber coupler. Opt. Lett. 27, 1031–1033 (2002).

Bird, D. & Gu, M. Resolution improvement in two-photon fluorescence microscopy with a single-mode fiber. Appl. Opt. 41, 1852–1857 (2002).

Delaney, P.M., Harris, M.R. & King, R.G. Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo. Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).

Delaney, P.M., Harris, M.R. & King, R.G. Fiber-optic laser scanning confocal microscope suitable for fluorescence imaging. Appl. Opt. 33, 573–577 (1994).

Delaney, P.M., King, R.G., Lambert, J.R. & Harris, M.R. Fibre optic confocal imaging (FOCI) for subsurface microscopy of the colon in vivo. J. Anat. 184, 157–160 (1994).

Tai, S.P. et al. Two-photon fluorescence microscope with a hollow-core photonic crystal fiber. Opt. Express 12, 6122–6128 (2004).

Kim, D., Kim, K.H., Yazdanfar, S. & So, P.T.C. Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy. Proceedings of SPIE 5700, 14–22 (2005).

Kim, D., Kim, K.H., Yazdanfar, S. & So, P.T.C. High speed handheld multiphoton multifoci microscopy. Proceedings of SPIE 5323, 267–272 (2004).

Carlson, K. et al. In vivo fiber-optic confocal reflectance microscope with an injection-molded miniature objective lens. Appl. Opt. 44, 1792–1796 (2005).

Giniunas, L., Juskaitis, R. & Shatalin, S.V. Scanning fibre-optic microscope. Electronics Lett. 27, 724–726 (1991).

Giniunas, L., Juskaitis, R. & Shatalin, S.V. Endoscope with optical sectioning capability. Appl. Opt. 32, 2888–2890 (1993).

Kiesslich, R. et al. Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127, 706–713 (2004).

Liang, C., Sung, K.B., Richards-Kortum, R. & Descour, M.R. Design of a high-numerical aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope. Appl. Opt. 41, 4603–4610 (2002).

Ota, T., Fukuyama, H., Ishihara, Y., Tanaka, H. & Takamatsu, T. In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy. J. Biomed. Opt. 10, 1–4 (2005).

Rouse, A.R. & Gmitro, A.F. Multispectral imaging with a confocal microendoscope. Opt. Lett. 25, 1708–1710 (2000).

Swindle, L.D., Thomas, S.G., Freeman, M. & Delaney, P.M. View of normal human skin in vivo as observed using fluorescent fiber-optic confocal microscopic imaging. J. Invest. Dermatol. 121, 706–712 (2003).

Anikijenko, P. et al. In vivo detection of small subsurface melanomas in athymic mice using noninvasive fiber optic confocal imaging. J. Invest. Dermatol. 117, 1442–1448 (2001).

Bussau, L.J. et al. Fibre optic confocal imaging (FOCI) of keratinocytes, blood vessels and nerves in hairless mouse skin in vivo. J. Anat. 192, 187–194 (1998).

Papworth, G.D., Delaney, P.M., Bussau, L.J., Vo, L.T. & King, R.G. In vivo fibre optic confocal imaging of microvasculature and nerves in the rat vas deferens and colon. J. Anat. 192, 489–495 (1998).

Rouse, A.R., Kano, A., Udovich, J.A., Kroto, S.M. & Gmitro, A.F. Design and demonstration of a miniature catheter for a confocal microendoscope. Appl. Opt. 43, 5763–5771 (2004).

Sabharwal, Y.S., Rouse, A.R., Donaldson, K.A., Hopkins, M.F. & Gmitro, A.F. Slit-scanning confocal microendoscope for high-resolution in vivo imaging. Appl. Opt. 38, 7133–7144 (1999).

McLaren, W., Anikijenko, P., Barkla, D., Delaney, T.P. & King, R. In vivo detection of experimental ulcerative colitis in rats using fiberoptic confocal imaging (FOCI). Dig. Dis. Sci. 46, 2263–2276 (2001).

McLaren, W.J., Anikijenko, P., Thomas, S.G., Delaney, P.M. & King, R.G. In vivo detection of morphological and microvascular changes of the colon in association with colitis using fiberoptic confocal imaging (FOCI). Dig. Dis. Sci. 47, 2424–2433 (2002).

Vo, L.T. et al. Autofluorescence of skin burns detected by fiber-optic confocal imaging: evidence that cool water treatment limits progressive thermal damage in anesthetized hairless mice. J. Trauma 51, 98–104 (2001).

Jung, J.C., Mehta, A.D., Aksay, E., Stepnoski, R. & Schnitzer, M.J. In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy. J. Neurophysiol. 92, 3121–3133 (2004).

Jung, J.C. & Schnitzer, M.J. Multiphoton endoscopy. Opt. Lett. 28, 902–904 (2003).

Levene, M.J., Dombeck, D.A., Kasischke, K.A., Molloy, R.P. & Webb, W.W. In vivo multiphoton microscopy of deep brain tissue. J. Neurophysiol. 91, 1908–1912 (2004).

Flusberg, B.A., Jung, J.C., Cocker, E.D., Anderson, E.P. & Schnitzer, M.J. In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope. Opt. Lett. 30, 2272–2274 (2005).

Gobel, W., Kerr, J.N., Nimmerjahn, A. & Helmchen, F. Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective. Opt. Lett. 29, 2521–2523 (2004).

Knittel, J., Schnieder, L., Buess, G., Messerschmidt, B. & Possner, T. Endoscope-compatible confocal microscope using a gradient index-lens system. Opt. Commun. 188, 267–273 (2001).

D'Hallewin, M-A., Khatib, S.E., Leroux, A., Bezdetnaya, L. & Guillemin, F. Endoscopic confocal fluorescence microscopy of normal and tumor bearing rat bladder. J. Urol. 174, 736–740 (2005).

Laemmel, E. et al. Fibered confocal fluorescence microscopy (Cell-viZio™) facilitates extended imaging in the field of microcirculation. A comparison with intravital microscopy. J. Vasc. Res. 41, 400–411 (2004).

Bird, D. & Gu, M. Two-photon fluorescence endoscopy with a micro-optic scanning head. Opt. Lett. 28, 1552–1554 (2003).

Mehta, A.D., Jung, J.C., Flusberg, B.A. & Schnitzer, M.J. Fiber optic in vivo imaging in the mammalian nervous system. Curr. Opin. Neurobiol. 14, 617–628 (2004).

Saleh, B.E.A. & Teich, M.C. Fundamentals of photonics (John Wiley & Sons, Inc., New York, USA, 1991).

Harris, M.R. (US patent 5120953, 1992).

Fu, L., Gan, X. & Gu, M. use of a single-mode fiber coupler for second-harmonic-generation microscopy. Opt. Lett. 30, 385–387 (2005).

Yariv, A. Three-dimensional pictorial transmission in optical fibers. Appl. Phys. Lett. 28, 88–89 (1976).

Helmchen, F., Tank, D.W. & Denk, W. Enhanced two-photon excitation through optical fiber by single-mode propagation in a large core. Appl. Opt. 41, 2930–2934 (2002).

Myaing, M.T., Urayama, J., Braun, A. & Norris, T.B. Nonlinear propagation of negatively chirped pulses: Maximizing the peak intensity at the output of a fiber probe. Opt. Express 7, 210–214 (2000).

Ouzounov, D.G. et al. Delivery of nanojoule femtosecond pulses through large-core microstructured fibers. Opt. Lett. 27, 1513–1515 (2002).

Knight, J.C. Photonic crystal fibres. Nature 424, 847–851 (2003).

Gobel, W., Nimmerjahn, A. & Helmchen, F. Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber. Opt. Lett. 29, 1285–1287 (2004).

Tai, S.-H., Chan, M.-C., Tsai, T.-H., Guol, S.-H., Chen, L.-J. & Sun, C.-K. Two-photon fluorescence microscope with a hollow-core photonic crystal fiber. Proceedings of SPIE 5691, 146–152 (2005).

Treacy, E.B. Optical pulse compression with diffraction gratings. IEEE J. Quantum Electron. QE-5, 454–458 (1969).

Fork, R.L., Brito Cruz, C.H., Becker, P.C. & Shank, C.V. Compression of optical pulses to six femtoseconds by using cubic phase compensation. Opt. Lett. 12, 483–485 (1987).

Ye, J.Y. et al. Development of a double-clad photonic-crystal-fiber based scanning microscope. Proceedings of SPIE 5700, 23–27 (2005).

Fu, L., Gan, X. & Gu, M. Nonlinear optical microscopy based on double-clad photonic crystal fibers. Opt. Express 13, 5528–5534 (2005).

Hirano, M., Yamashita, Y. & Miyakawa, A. In vivo visualization of hippocampal cells and dynamics of Ca2+ concentration during anoxia: feasibility of a fiber-optic plate microscope system for in vivo experiments. Brain Res. 732, 61–68 (1996).

Lane, P.M., Dlugan, A.L.P., Richards-Kortum, R. & MacAulay, C.E. Fiber-optic confocal microscopy using a spatial light modulator. Opt. Lett. 25, 1780–1782 (2000).

Gmitro, A.F. & Aziz, D. Confocal microscopy through a fiber-optic imaging bundle. Opt. Lett. 18, 565–567 (1993).

Lin, C.H. & Webb, R.H. Fiber-coupled multiplexed confocal microscope. Opt. Lett. 25, 954–957 (2000).

Dong, C.Y., Koenig, K. & So P. Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium J. Biomed. Opt. 8, 450–459 (2003).

Seibel, E.J. & Smithwick, Q.Y. Unique features of optical scanning, single fiber endoscopy. Lasers Surg. Med. 30, 177–183 (2002).

Delaney, P.M. & Harris, M.R. In Handbook of Biological Confocal Microscopy (ed. Pawley, J. B.) 515–523 (Plenum Press, New York, 1995).

Harris, M.R. (UK patent W09904301, 1999).

Dickensheets, D. & Kino, G.S. Scanned optical fiber confocal microscope. Proceedings of SPIE 2184, 39–47 (1994).

Dickensheets, D.L. & Kino, G.S. Micromachined scanning confocal optical microscope. Opt. Lett. 21, 764–766 (1996).

Hofmann, U., Muehlmann, S., Witt, M., Dorschel, K., Schutz, R. & Wagner, B. Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope. Proceedings of SPIE 3878, 29–38 (1999).

Piyawattanametha, W., Toshiyoshi, H., LaCosse, J. & Wu, M.C. Surface micromachined confocal scanning optical microscope. In Technical Digest Series of Conference on Lasers and Electro-Optics (CLEO), 447–448 (San Francisco, 2000).

Piyawattanametha, W., Patterson, P., Hah, D., Toshiyoshi, H. & Wu, M.C. A 2D scanner by surface and bulk micromachined angular vertical comb actuators. In IEEE/LEOS International Conference on Optical MEMS, 93–94 (Waikoloa, Hawaii, 2003).

Schenk, H. et al. Large deflection micromechanical scanning mirrors for linear scans and pattern generation. J. Select. Topics in Quantum Electronics 6, 715–722 (2000).

Lee, D. Solgaard, O. T. Two-axis gimbaled microscanner in double SOI layers actuated by self-aligned vertical electrostatic combdrive. In Proceedings of the Solid-State Sensor and Actuator Workshop, 352–355 (Hilton Head, South Carolina, 2004).

Rector, D.M., Rogers, R.F. & George, J.S. A focusing image probe for assessing neural activity in vivo. J. Neurosci. Methods 91, 135–145 (1999).

Kuiper, S. & Hendriks, B.H.W. Variable-focus liquid lens for miniature cameras. Appl. Phys. Lett. 85, 1128–1130 (2004).

Berge, B. & Peseux, J. Variable focal lens controlled by an external voltage: an application of electrowetting. Eur. Phys. J. E 3, 159–163 (2000).

Kuiper, S., Hendriks, B.H.W., Hayes, R.A., Feenstra, B.J. & Baken, J.M.E. Electrowetting-based optics. Proceedings of SPIE 5908, 5908OR-1–5908OR-7 (2005).

George, M. Optical methods and sensors for in situ histology in surgery and endoscopy. Min. Invas. Ther. & Allied. Technol. 13, 95–104 (2004).

Fisher, J.A.N., Civillico, E.F., Contreras, D. & Yodh, A.G. In vivo fluorescence microscopy of neuronal activity in three dimensions by use of voltage-sensitive dyes. Opt. Lett. 29, 71–73 (2004).

Poe, G.R., Rector, D.M. & Harper, R.M. Hippocampal reflected optical patterns during sleep and waking states in the freely behaving cat. J. Neurosci. 14, 2933–2942 (1994).

Wang, T.D., Contag, C.H., Mandella, M.J., Chan, N.Y. & Kino, G.S. Dual-axes confocal microscopy with post-objective scanning and low-coherence heterodyne detection. Opt. Lett. 28, 1915–1917 (2003).

Wang, T.D., Contag, C.H., Mandella, M.J., Chan, N.Y. & Kino, G.S. Confocal fluorescence microscope with dual-axis architecture and biaxial postobjective scanning. J. Biomed. Opt. 9, 735–742 (2004).

Wang, T.D., Mandella, M.J., Contag, C.H. & Kino, G.S. Dual-axis confocal microscope for high resolution in vivo imaging. Opt. Lett. 28, 414–416 (2003).

Brown, E. et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med. 9, 796–800 (2003).

Cheng, J.-X., & Xie, X.S. Coherent anti-Stokes Raman scattering microscopy: instrumentation theory, and applications. J. Phys. Chem. B 108, 827–840 (2004).

Kwon, S. & Lee, L.P. Micromachined transmissive scanning confocal microscope. Opt. Lett. 29, 706–708 (2004).

Lee, K.-N., Jang, Y.-H., Choi, J. & Kim, H. Silicon scanning mirror with 54.74° slanted reflective surface for fluorescence scanning system. Proceedings of SPIE 5641, 56–66 (2004).

Sheard, S., Suhara, T. & Nishihara, H. Integrated-optic implementation of a confocal scanning optical microscope. Journal of Lightwave Technology 11, 1400–1403 (1993).

Thrush, E. et al. Integrated semiconductor verticle-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing. IEEE J. Quantum Electron. 40, 491–498 (2004).

McConnell, G. & Riis, E. Photonic crystal fibre enables short-wavelength two-photon laser scanning fluorescence microscopy with fura-2. Phys. Med. Biol. 49, 4757–4763 (2004).

McConnell, G. & Riis, E. Two-photon laser scanning fluorescence microscopy using photonic crystal fiber. J. Biomed. Opt. 9, 922–927 (2004).