Feynman formula for Schrödinger-type equations with time- and space-dependent coefficients

Russian Journal of Mathematical Physics - Tập 19 Số 3 - Trang 340-359 - 2012
A. S. Plyashechnik1
1Department of Mechanics and Mathematics, Moscow State University, Leninskie gory, Moscow, 119991, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. P. Maslov, Complex Markov Chains and the Feynman Path Integral for Nonlinear Equations (Izdat. “Nauka”, Moscow, 1976).

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems (Birkhäuser, Basel, 1995).

A. Pazy, Semigroups of Linear Operator and Applications to Partial Differential Equations (Springer, New York-Berlin, 1983).

O. G. Smolyanov, H. V. Weizsäcker, and O. Wittich, “Brownian Motion on a Manifold as Limit of Stepwise Conditioned Standard Brownian Motions,” Can. Math. Soc. Conf. Proc. 29 (Amer. Math. Soc., Providence, RI, 2000), pp. 589–602.

M. Gadella and O. G. Smolyanov, “Feynman Formulas for Particles with Position-Dependent Mass,” Dokl. Ross. Akad. Nauk 418(6), 727–730 (2008) [Doklady Math. 77 (1), 120–123 (2008)].

K. J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations (Springer, 2000).

Ya. A. Butko, “The Feynman-Kac-Ito Formula for an Infinite-Dimensional Schrödinger Equation with Scalar and Vector Potentials,” Nelin. Dinam. 2(1), 75–87 (2006) [in Russian].

Ya. A. Butko, “Functional Integrals for the Schrödinger Equation on a Compact Riemannian Manifold,” Mat. Zametki 79(2), 194–200 (2006) [Math. Notes 79 (1–2), 178–184 (2006)].

O. G. Smolyanov, “Infinite-Dimensional Pseudodifferential Operators and Schrödinger Quantization,” Dokl. Akad. Nauk SSSR 263(3), 558–562 (1982) [Sov. Math., Dokl. 25, 404–408 (1982)].

S. Albeverio, A. Khrennikov, and O. Smolyanov, “The Probabilistic Feynman-Kac Formula for Infinite-Dimensional Schrödinger Equation with Exponential and Singular Potentials,” Potential Analysis 11, 157–181 (1999).

O. G. Smolyanov and E. T. Shavgulidze, “Infinite-Dimensional Schrödinger Equations with Polynomial Potentials and Feynman Path Integrals,” Dokl. Ross. Akad. Nauk 408(1), 28–33 (2006) [Doklady Math. 73 (3), 334–339 (2006)].

O. G. Smolyanov and A. Truman, “Hamiltonian Feynman Formulas for the Schrödinger Equation in Bounded Domains,” Dokl. Akad. Nauk SSSR 399(3), 310–314 (2004) [Doklady Math, 70 (3), 899–903].

O. G. Smolyanov and E. T. Shavgulidze, Path Integrals (Moskov. Gos. Univ., Moscow, 1990).

R. P. Feynman, “Space-Time Approach to Non-Relativistic Quantum Mechanics,” Rev. Modern Physics 20(2), 367–387 (1948).

S. Weinberg, The Quantum Theory of Fields Vols. I, II, III. (Cambridge University Press, Cambridge, 2005).

M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley Publishing Company, Advanced Book Program, Reading, MA, 1995; Izhevsk: Regular and Chaotic Dynamics, 2001).

O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman Path Integrals Via the Chernoff Formula” J. Math. Phys. 43(10), 5161–5171 (2002).

R. P. Chernoff, “Note on Product Formulas for Operator Semigroups,” J. Funct. Anal. 2(2), 238–242 (1968).

E. Nelson, “Feynman Integrals and the Schrödinger Equation,” J. Math. Phys. 5(3), 332–343 (1964).

O. O. Obrezkov, O. G. Smolyanov, and A. Truman, “The Generalized Chernoff Theorem and Randomized Feynman Formula,” 400(5), 596–602 (2005) [Doklady Math. 71 (1), 105–110 (2005)].

N. N. Shamarov, Representations of Evolution Semigroups by Path Integrals in Real and p-Adic Spaces (Doctoral Thesis. Moscow State University, 2011).