Feynman–Kac formula for perturbations of order $$\le 1$$, and noncommutative geometry

Sebastián Boldt1, Batu Güneysu2
1Mathematisches Institut, Universität Leipzig, Leipzig, Germany
2Fakultät für Mathematik, Technische Universität Chemnitz, Chemnitz, Germany

Tóm tắt

AbstractLet Q be a differential operator of order $$\le 1$$ 1 on a complex metric vector bundle $$\mathscr {E}\rightarrow \mathscr {M}$$ E M with metric connection $$\nabla $$ over a possibly noncompact Riemannian manifold $$\mathscr {M}$$ M . Under very mild regularity assumptions on Q that guarantee that $$\nabla ^{\dagger }\nabla /2+Q$$ / 2 + Q canonically induces a holomorphic semigroup $$\mathrm {e}^{-zH^{\nabla }_{Q}}$$ e - z H Q in $$\Gamma _{L^2}(\mathscr {M},\mathscr {E})$$ Γ L 2 ( M , E ) (where z runs through a complex sector which contains $$[0,\infty )$$ [ 0 , ) ), we prove an explicit Feynman–Kac type formula for $$\mathrm {e}^{-tH^{\nabla }_{Q}}$$ e - t H Q , $$t>0$$ t > 0 , generalizing the standard self-adjoint theory where Q is a self-adjoint zeroth order operator. For compact $$\mathscr {M}$$ M ’s we combine this formula with Berezin integration to derive a Feynman–Kac type formula for an operator trace of the form $$\begin{aligned} \mathrm {Tr}\left( \widetilde{V}\int ^t_0\mathrm {e}^{-sH^{\nabla }_{V}}P\mathrm {e}^{-(t-s)H^{\nabla }_{V}}\mathrm {d}s\right) , \end{aligned}$$ Tr V ~ 0 t e - s H V P e - ( t - s ) H V d s , where $$V,\widetilde{V}$$ V , V ~ are of zeroth order and P is of order $$\le 1$$ 1 . These formulae are then used to obtain a probabilistic representations of the lower order terms of the equivariant Chern character (a differential graded extension of the JLO-cocycle) of a compact even-dimensional Riemannian spin manifold, which in combination with cyclic homology play a crucial role in the context of the Duistermaat–Heckmann localization formula on the loop space of such a manifold.

Từ khóa


Tài liệu tham khảo

Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Commun. Pure Appl. Math. 35(2), 209–273 (1982)

Arendt, W., Grabosch, A., Greiner, G., Groh, U., Lotz, H.P., Moustakas, U., Nagel, R., Neubrander, F., Schlotterbeck, U.: One-Parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, vol. 1184. Springer, Berlin (1986)

Atiyah, M.F.: Circular symmetry and stationary-phase approximation. Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). Astérisque No. 131, pp. 43–59 (1985)

Bérard, P.H.: Spectral Geometry: Direct and Inverse Problems. With Appendixes by Gérard Besson, and by Bérard and Marcel Berger. Lecture Notes in Mathematics, 1207, vol. 1207. Springer, Berlin (1986)

Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren der Mathematischen Wissenschaften, vol. 298. Springer, Berlin (1992)

Bismut, J.-M.: The Atiyah–Singer theorems: a probabilistic approach. I. The index theorem. J. Funct. Anal. 57(1), 56–99 (1984)

Bismut, J.-M.: Index theorem and equivariant cohomology on the loop space. Commun. Math. Phys. 98(2), 213–237 (1985)

Boldt, S., Güneysu, B.: Scattering Theory and Spectral Stability under a Ricci Flow for Dirac Operators. arXiv:2003.10204 (2020)

Braun, M., Güneysu, B.: Heat flow regularity, Bismut–Elworthy–Li’s derivative formula, and pathwise couplings on Riemannian manifolds with Kato bounded Ricci curvature. Preprint (2020)

Broderix, K., Hundertmark, D., Leschke, H.: Continuity properties of Schrödinger semigroups with magnetic fields. Rev. Math. Phys. 12(2), 181–225 (2000)

Chill, R., ter Elst, A.F.M.: Weak and strong approximation of semigroups on Hilbert spaces. Integral Equ. Oper. Theory 90(1) Paper No. 9 (2018)

Dodziuk, J.: Maximum principle for parabolic inequalities and the heat flow on open manifolds. Indiana Univ. Math. J. 32(5), 703–716 (1983)

Driver, B.K., Thalmaier, A.: Heat equation derivative formulas for vector bundles. J. Funct. Anal. 183(1), 42–108 (2001)

Güneysu, B., Pallara, D.: Functions with bounded variation on a class of Riemannian manifolds with Ricci curvature unbounded from below. Math. Ann. 363(3–4), 1307–1331 (2015)

Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262(11), 4639–4674 (2012)

Güneysu, B.: Covariant Schrödinger Semigroups on Riemannian Manifolds. Operator Theory: Advances and Applications, vol. 264. Springer, Cham (2017)

Güneysu, B., Ludewig, M.: The Chern character of $$\vartheta $$-summable Fredholm modules over dg algebras and localization on loop space. Adv. Math. 395, 10814 (2022)

Hackenbroch, W., Thalmaier, A.: Stochastische Analysis. B.G. Teubner, Stuttgart (1994)

Hsu, E.P.: Stochastic Analysis on Manifolds. Graduate Studies in Mathematics, vol. 38. American Mathematical Society, Providence, RI (2002)

Jaffe, A., Lesniewski, A., Osterwalder, K.: Quantum K-theory. I. The Chern character. Commun. Math. Phys. 118(1), 1–14 (1988)

Kato, T.: Perturbation theory for linear operators. Reprint of the 1980 edition. Springer, classics in mathematics

Lawson, H.B., Jr., Michelsohn, M.-L.: Spin Geometry. Princeton Mathematics Series, vol. 38. Princeton Univesity Press, Princeton, NJ (1989)

Norris, J.R.: A complete differential formalism for stochastic calculus in manifolds. Séminaire de Probabilités, XXVI, 189–209, Lecture Notes in Math., 1526. Springer, Berlin (1992)

Ouhabaz, E.M.: $$L^p$$ contraction semigroups for vector valued functions. Positivity 3(1), 83–93 (1999)

Plank, H.: Stochastic representation of the gradient and Hessian of diffusion semigroups on Riemannian manifolds. Dissertation, Universität Regensburg (2003)

Shigekawa, I.: $$L^p$$ contraction semigroups for vector valued functions. J. Funct. Anal. 147(1), 69–108 (1997)

Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc. (N.S.) 7(3), 447–526 (1982)

Simon, B.: Functional Integration and Quantum Physics, 2nd edn. AMS Chelsea Publishing, Providence, RI (2005)

Simon, B.: An abstract Kato’s inequality for generators of positivity preserving semigroups. Indiana Univ. Math. J. 26(6), 1067–1073 (1977)

Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)

Sturm, K.-T.: Schrödinger semigroups on manifolds. J. Funct. Anal. 118(2), 309–350 (1993)