Feynman-Kac Representation of Fully Nonlinear PDEs and Applications

Huyên Pham1,2
1Laboratoire de Probabilités et Modèles Aléatoires
2Centre de Recherche en Économie et Statistique

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bally, V., Pagès, G.: A quantization algorithm for solving discrete time multidimensional optimal stopping problems. Bernoulli 9, 100–1049 (2002)

Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochastics and Stochastics Reports 60, 57–83 (1997)

Barles, G., Jacobsen, E.R.: Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equation. Math. Comp. 76, 1861–1893 (2007)

Bismut, J.M.: Analyse convexe et probabilités, thèse, Faculté des sciences de Paris (1973)

Bouchard, B., Ekeland, I., Touzi, N.: On the Malliavin approach to Monte Carlo approximation of conditional expectations. Finance Stoch. 8, 45–71 (2004)

Bouchard, B., Elie, R.: Discrete-time approximation of decoupled forward-backward SDE with jumps. Stoch. Process Appl. 118(1), 53–75 (2008)

Bouchard, B., Touzi, N.: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process Appl. 111, 175–206 (2004)

Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab. Theory Related Fields 136, 604–618 (2006)

Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Related Fields 141, 543–567 (2008)

Chassagneux, J.F., Richou, A.: Numerical simulation of quadratic BSDEs. preprint arXiv: 1307.5741 (2013)

Cosso, A., Fuhrman, M., Pham, H.: Long time asymptotics for fully nonlinear Bellman equations: a backward SDE approach. preprint arXiv: 1410.1125 (2014)

El Karoui, N., Mazliak, L.: Backward stochastic differential equations. Pitman research notes, 364 (1997)

El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7, 1–71 (1997)

Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer-Verlag (2006)

Fuhrman, M., Hu, Y., Tessitore, G.: Ergodic BSDEs and optimal ergodic control in Banach spaces. SIAM J. Control Optim. 48, 1542–1566 (2009)

Fuhrman, M., Pham, H.: Randomized and backward SDE representation for optimal control on non-Markovian SDEs. To appear in Annals of Applied Probability (2013)

Gobet, E., Lemor, J.P., Warin, X.: Rate of convergence of empirical regression method for solving generalized BSDE. Bernoulli 12, 889–916 (2006)

Hu, Y., Madec, P.-Y., Richou, A.: Large time behavior of mild solutions of Hamilton-Jacobi-Bellman equations in infinite dimension by a probabilistic approach. preprint arXiv: 1406.5993 (2014)

Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Comm. Pure Appl. Math. 42, 15–45 (1989)

Kharroubi, I., Langrené, N., Pham, H.: Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps. To appear in Annals of Applied Probability (2013)

Kharroubi, I., Langrené, N., Pham, H.: A numerical algorithm for fully nonlinear HJB equations: an approch by control randomization. Monte-Carlo Methods Appl. 20(2), 145–165 (2014)

Kharroubi, I., Pham, H.: Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE. To appear in Annals of Probability (2012)

Kloeden, P., Platen, E.: Numerical solution of stochastic differential equations. Springer, Series SMAP (1992)

Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558–602 (2000)

Krylov, N.V.: On the rate of convergence of finite difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Related Fields 117, 1–16 (2000)

Longstaff, F., Schwartz, E.: Valuing american options by simulation : a simple least-square approach. Rev. Financ. Stud. 14, 113–147 (2001)

Pagès, G., Pham, H., Printems, J.: Optimal quantization and applications to numerical problems in finance. In: Rachev, S.T. (ed.) Handbook of Computational and Numerical Methods in Finance. Birkhauser, Boston (2004)

Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14(1), 55–61 (1990)

Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic partial differential equations and their applications. In: Rozovskii, B.L., Sowers, R.B. (eds.) : Lect. Notes in Control and Inform. Sci., vol. 176, pp 200–217. Springer, Berlin (1992)

Peng, S.: Nonlinear expectations and risk measures, Proceedings of the CIME-EMS summer school Bressanone (2003)

Peng, S.: G-expectation, G-Brownian motion and related stochastic calculus of Ito type. In: Proceedings of 2005 Abel symposium. Springer (2006)

Pham, H.: Continuous time stochastic control and optimization with financial applications. Springer, Series SMAP (2009)

Richou, A.: Ergodic BSDEs and related PDEs with Neumann boundary conditions. to appear in Stochastic Process. Appl (2009)

Soner, M., Touzi, N., Zhang, J.: The wellposedness of second order backward SDEs. Probab. Theory Related Fields 153, 149–190 (2011)

Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with jumps. SIAM J. Control Optim. 32, 1447–1475 (1994)

Zhang, J.: A numerical scheme for BSDEs. Ann. Appl. Probab. 14, 459–488 (2004)