Feynman-Kac Representation of Fully Nonlinear PDEs and Applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bally, V., Pagès, G.: A quantization algorithm for solving discrete time multidimensional optimal stopping problems. Bernoulli 9, 100–1049 (2002)
Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stochastics and Stochastics Reports 60, 57–83 (1997)
Barles, G., Jacobsen, E.R.: Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equation. Math. Comp. 76, 1861–1893 (2007)
Bouchard, B., Ekeland, I., Touzi, N.: On the Malliavin approach to Monte Carlo approximation of conditional expectations. Finance Stoch. 8, 45–71 (2004)
Bouchard, B., Elie, R.: Discrete-time approximation of decoupled forward-backward SDE with jumps. Stoch. Process Appl. 118(1), 53–75 (2008)
Bouchard, B., Touzi, N.: Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations. Stoch. Process Appl. 111, 175–206 (2004)
Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab. Theory Related Fields 136, 604–618 (2006)
Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal conditions. Probab. Theory Related Fields 141, 543–567 (2008)
Chassagneux, J.F., Richou, A.: Numerical simulation of quadratic BSDEs. preprint arXiv: 1307.5741 (2013)
Cosso, A., Fuhrman, M., Pham, H.: Long time asymptotics for fully nonlinear Bellman equations: a backward SDE approach. preprint arXiv: 1410.1125 (2014)
El Karoui, N., Mazliak, L.: Backward stochastic differential equations. Pitman research notes, 364 (1997)
El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math. Finance 7, 1–71 (1997)
Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, 2nd edn. Springer-Verlag (2006)
Fuhrman, M., Hu, Y., Tessitore, G.: Ergodic BSDEs and optimal ergodic control in Banach spaces. SIAM J. Control Optim. 48, 1542–1566 (2009)
Fuhrman, M., Pham, H.: Randomized and backward SDE representation for optimal control on non-Markovian SDEs. To appear in Annals of Applied Probability (2013)
Gobet, E., Lemor, J.P., Warin, X.: Rate of convergence of empirical regression method for solving generalized BSDE. Bernoulli 12, 889–916 (2006)
Hu, Y., Madec, P.-Y., Richou, A.: Large time behavior of mild solutions of Hamilton-Jacobi-Bellman equations in infinite dimension by a probabilistic approach. preprint arXiv: 1406.5993 (2014)
Ishii, H.: On uniqueness and existence of viscosity solutions of fully nonlinear second-order elliptic PDE’s. Comm. Pure Appl. Math. 42, 15–45 (1989)
Kharroubi, I., Langrené, N., Pham, H.: Discrete time approximation of fully nonlinear HJB equations via BSDEs with nonpositive jumps. To appear in Annals of Applied Probability (2013)
Kharroubi, I., Langrené, N., Pham, H.: A numerical algorithm for fully nonlinear HJB equations: an approch by control randomization. Monte-Carlo Methods Appl. 20(2), 145–165 (2014)
Kharroubi, I., Pham, H.: Feynman-Kac representation for Hamilton-Jacobi-Bellman IPDE. To appear in Annals of Probability (2012)
Kloeden, P., Platen, E.: Numerical solution of stochastic differential equations. Springer, Series SMAP (1992)
Kobylanski, M.: Backward stochastic differential equations and partial differential equations with quadratic growth. Ann. Probab. 28, 558–602 (2000)
Krylov, N.V.: On the rate of convergence of finite difference approximations for Bellman’s equations with variable coefficients. Probab. Theory Related Fields 117, 1–16 (2000)
Longstaff, F., Schwartz, E.: Valuing american options by simulation : a simple least-square approach. Rev. Financ. Stud. 14, 113–147 (2001)
Pagès, G., Pham, H., Printems, J.: Optimal quantization and applications to numerical problems in finance. In: Rachev, S.T. (ed.) Handbook of Computational and Numerical Methods in Finance. Birkhauser, Boston (2004)
Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14(1), 55–61 (1990)
Pardoux, E., Peng, S.: Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic partial differential equations and their applications. In: Rozovskii, B.L., Sowers, R.B. (eds.) : Lect. Notes in Control and Inform. Sci., vol. 176, pp 200–217. Springer, Berlin (1992)
Peng, S.: Nonlinear expectations and risk measures, Proceedings of the CIME-EMS summer school Bressanone (2003)
Peng, S.: G-expectation, G-Brownian motion and related stochastic calculus of Ito type. In: Proceedings of 2005 Abel symposium. Springer (2006)
Pham, H.: Continuous time stochastic control and optimization with financial applications. Springer, Series SMAP (2009)
Richou, A.: Ergodic BSDEs and related PDEs with Neumann boundary conditions. to appear in Stochastic Process. Appl (2009)
Soner, M., Touzi, N., Zhang, J.: The wellposedness of second order backward SDEs. Probab. Theory Related Fields 153, 149–190 (2011)
Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with jumps. SIAM J. Control Optim. 32, 1447–1475 (1994)