Fertilizing porphyry Cu deposits through deep crustal hot zone melting

Gondwana Research - Tập 60 - Trang 179-185 - 2018
Bo Wan1,2,3, Chen Deng1,3, Ali Najafi4, Mohammad Reza Hezareh4, Morteza Talebian4, Leilei Dong1,3, Ling Chen3, Wenjiao Xiao3
1State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
2Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
3University of Chinese Academy of Sciences, Beijing, 100049, China
4Geological Survey of Iran, Azadi Square, Meraj Blvd, Tehran, Iran

Tài liệu tham khảo

Agard, 2011, Zagros orogeny: a subduction-dominated process, Geological Magazine, 148, 692, 10.1017/S001675681100046X Aghazadeh, 2015, Temporal-spatial distribution and tectonic setting of porphyry copper deposits in Iran: constraints from zircon U-Pb and molybdenite Re-Os geochronology, Ore Geology Reviews, 70, 385, 10.1016/j.oregeorev.2015.03.003 Allen, 2008, Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography Palaeoclimatology Palaeoecology, 265, 52, 10.1016/j.palaeo.2008.04.021 Annen, 2006, The genesis of intermediate and silicic magmas in deep crustal hot zones, Journal of Petrology, 47, 505, 10.1093/petrology/egi084 Ayati, 2013, Petrology and geochemistry of calc-alkaline volcanic and subvolcanic rocks, Dalli porphyry copper–gold deposit, Markazi Province, Iran, Int. Geol. Rev., 55, 158, 10.1080/00206814.2012.689640 Chapman, 2015, Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera, Geology, 43, 919, 10.1130/G36996.1 Chiaradia, 2014, Copper enrichment in arc magmas controlled by overriding plate thickness, Nature Geoscience, 7, 43, 10.1038/ngeo2028 Chiaradia, 2015, Crustal thickness control on Sr/Y signatures of recent arc magmas: an Earth scale perspective, Scientific Reports, 5, 8115, 10.1038/srep08115 Chiaradia, 2017, Stochastic modelling of deep magmatic controls on porphyry copper deposit endowment, Scientific Reports, 7, 10.1038/srep44523 Chiu, 2013, Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny, Lithos, 162–163, 70, 10.1016/j.lithos.2013.01.006 Chung, 2003, Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet, Geology, 31, 1021, 10.1130/G19796.1 Chung, 2005, Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism, Earth-Science Reviews, 68, 173, 10.1016/j.earscirev.2004.05.001 Cooke, 2005, Giant porphyry deposits: characteristics, distribution, and tectonic controls, Economic Geology, 100, 801, 10.2113/gsecongeo.100.5.801 DeCelles, 2009, Cyclicity in Cordilleran orogenic systems, Nature Geoscience, 2, 251, 10.1038/ngeo469 Defant, 1990, Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662, 10.1038/347662a0 Deng, 2018, Miocene porphyry copper deposits in the Eastern Tethyan orogenic belt: using Sr, O isotopes and Sr/Y ratios to predict the source of ore-related and ore-barren magmas, Gondwana Research, 10.1016/j.gr.2018.03.007 Dickinson, 2006, Geotectonic evolution of the Great Basin, Geosphere, 2, 353, 10.1130/GES00054.1 Haschke, 2010, Copper mineralization prevented by arc-root delamination during Alpine-Himalayan collision in central Iran, Economic Geology, 105, 855, 10.2113/gsecongeo.105.4.855 Hatzfeld, 2010, Comparisons of the kinematics and deep structures of the Zagros and Himalaya and of the Iranian and Tibetan plateaus and geodynamic implications, Reviews of Geophysics, 48, RG2005, 10.1029/2009RG000304 Hildreth, 1988, Crustal contributions to arc magmatism in the Andes of Central Chile, Contributions to Mineralogy and Petrology, 98, 455, 10.1007/BF00372365 Hou, 2009, Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue, Ore Geology Reviews, 36, 2, 10.1016/j.oregeorev.2009.05.001 Hou, 2015, A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones, Geology, 43, 247, 10.1130/G36362.1 Hou, 2017, Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges, Geology, 45, 563, 10.1130/G38619.1 Humphreys, 1995, Post-Laramide removal of the Farallon slab, western United States, Geology, 23, 987, 10.1130/0091-7613(1995)023<0987:PLROTF>2.3.CO;2 Kay, 1994, Young mafic back arc volcanic rocks as indicators of continental lithospheric delamination beneath the Argentine Puna plateau, central Andes, Journal of Geophysical Research - Solid Earth, 99, 24323, 10.1029/94JB00896 Lee, 2009, Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas, Earth and Planetary Science Letters, 279, 20, 10.1016/j.epsl.2008.12.020 Lee, 2012, Copper systematics in arc magmas and implications for crust-mantle differentiation, Science, 336, 64, 10.1126/science.1217313 Li, 2007, Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: a flat-slab subduction model, Geology, 35, 179, 10.1130/G23193A.1 Liu, 2010, Geochemical contrasts between early Cretaceous ore-bearing and ore-barren high-Mg adakites in central-eastern China: implications for petrogenesis and Cu–Au mineralization, Geochimica et Cosmochimica Acta, 74, 7160, 10.1016/j.gca.2010.09.003 Loucks, 2014, Distinctive composition of copper-ore-forming arcmagmas, Australian Journal of Earth Sciences, 61, 5, 10.1080/08120099.2013.865676 Lu, 2015, Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet, Geology, 43, 583, 10.1130/G36734.1 Lu, 2016, Zircon compositions as a pathfinder for porphyry Cu ± Mo ± Au deposits, Economic Geology, 19, 329 Moghadam, 2017, Neoproterozoic magmatic flare-up along the N. margin of Gondwana: the Taknar complex, NE Iran, Earth and Planetary Science Letters, 474, 83, 10.1016/j.epsl.2017.06.028 Moritz, 2016, Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan, Gondwana Research, 37, 465, 10.1016/j.gr.2015.10.009 Proffett, 2003, Geology of the Bajo de la Alumbrera porphyry copper-gold deposit, Argentina, Economic Geology, 98, 1535, 10.2113/gsecongeo.98.8.1535 Richards, 2003, Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation, Economic Geology, 98, 1515, 10.2113/gsecongeo.98.8.1515 Richards, 2009, Postsubduction porphyry Cu-Au and epithermal Au deposits: products of remelting of subduction-modified lithosphere, Geology, 37, 247, 10.1130/G25451A.1 Richards, 2012, High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan, Economic Geology, 107, 295, 10.2113/econgeo.107.2.295 Rudnick, 2003, Composition of the continental crust, 1 Shafiei, 2009, Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran, Mineralium Deposita, 44, 265, 10.1007/s00126-008-0216-0 Sillitoe, 2010, Porphyry copper systems, Economic Geology, 105, 3, 10.2113/gsecongeo.105.1.3 Verdel, 2011, A Paleogene extensional arc flare-up in Iran, Tectonics, 30, 10.1029/2010TC002809 Wilkinson, 2013, Triggers for the formation of porphyry ore deposits in magmatic arcs, Nature Geoscience, 6, 917, 10.1038/ngeo1940 Yang, 2009, Geology of the post-collisional porphyry copper–molybdenum deposit at Qulong, Tibet, Ore Geology Reviews, 36, 133, 10.1016/j.oregeorev.2009.03.003