Ferrocene partition calculation in a biodiesel/water interface using electrochemical methods

Ionics - Tập 20 - Trang 1183-1188 - 2014
R. M. P Silva1, M. C. Maynart1, H. B. Suffredini1
1Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil

Tóm tắt

This work is a continuation of previous studies concerning the behaviour of ferrocene in a mixture of two insoluble liquids. In this paper, the system reached partition equilibrium after approximately 175 min. Electroanalytical studies were executed, and a high reproducibility was observed in a range of concentrations from 2 to 14 × 10−5 mol L−1 of ferrocene that escaped from the oil to the aqueous phase. Because ferrocene most likely occurs only in the monomeric form in both the oil and aqueous phases, it was possible to predict a partition coefficient (log P(oil/water)) of ferrocene of approximately 2.4.

Tài liệu tham khảo

Volkov AG (2001) Liquid interfaces in chemical, biological, and pharmaceutical applications. Surfactant science series, vol 95. Marcel Dekker, New York Plana D, Jones FGE, Dryfe RAW (2010) The voltammetric response of bipolar cells: reversible electron transfer. J Electroanal Chem 646(1–2):107–113. doi:10.1016/j.jelechem.2010.03.020 Molina A, Ortuno JA, Serna C, Torralba E, Gonzalez J (2010) Advances in the study of ion transfer at liquid membranes with two polarized interfaces by square wave voltammetry. Electroanal 22(14):1634–1642. doi:10.1002/elan.200900593 Marecek V, Samec Z, Koryta J (1988) Charge-transfer across the interface of 2 immiscible electrolyte-solutions. Adv Colloid Interface 29(1–2):1–78. doi:10.1016/0001-8686(88)80002-2 Shao Y (2007) 17.3—Electrochemistry at liquid/liquid interfaces. In: Cynthia GZ (ed) Handbook of electrochemistry. Elsevier, Amsterdam, pp 785–809. doi:10.1016/B978-044451958-0.50034-3 Davies TJ, Wilkins SJ, Compton RG (2006) The electrochemistry of redox systems within immobilised water droplets. J Electroanal Chem 586(2):260–275. doi:10.1016/j.jelechem.2005.09.025 Díaz-Ballote L, López-Sansores JF, Maldonado-López L, Garfias-Mesias LF (2009) Corrosion behavior of aluminum exposed to a biodiesel. Electrochem Commun 11(1):41–44. doi:10.1016/j.elecom.2008.10.027 Lourenço LM, Stradiotto NR (2009) Determination of free glycerol in biodiesel at a platinum oxide surface using potential cycling technique. Talanta 79(1):92–96. doi:10.1016/j.talanta.2009.03.013 Maynart MC, Ferreira RQ, Suffredini HB (2011) The Use of diamond electrodes in the interface biodiesel/water. Electroanal 23(2):330–333. doi:10.1002/elan.201000631 Vujicic D, Comic D, Zarubica A, Micic R, Boskovic G (2010) Kinetics of biodiesel synthesis from sunflower oil over CaO heterogeneous catalyst. Fuel 89(8):2054–2061. doi:10.1016/j.fuel.2009.11.043 Enweremadu CC, Mbarawa MM (2009) Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renew Sust Energ Rev 13(9):2205–2224. doi:10.1016/j.rser.2009.06.007 França RF, de Oliveira HPM, Pedrosa VA, Codognoto L (2012) Electroanalytical determination of carbendazim and fenamiphos in natural waters using a diamond electrode. Diam Relat Mater 27–28:54–59. doi:10.1016/j.diamond.2012.05.010 Xu J, Chen Q, Swain GM (1998) Anthraquinonedisulfonate electrochemistry: a comparison of glassy carbon, hydrogenated glassy carbon, highly oriented pyrolytic graphite, and diamond electrodes. Anal Chem 70(15):3146–3154. doi:10.1021/ac9800661 Pleskov YV (2000) Synthetic diamond, a new electrode material for electroanalysis. J Anal Chem 55(11):1045–1050. doi:10.1007/bf02757329 Codognoto L, Tanimoto ST, Pedrosa VA, Suffredini HB, Machado SAS, Avaca LA (2006) Electroanalytical determination of carbaryl in natural waters on boron doped diamond electrode. Electroanal 18(3):253–258. doi:10.1002/elan.200503396 Suffredini HB, Pedrosa VA, Codognoto L, Machado SAS, Rocha-Filho RC, Avaca LA (2004) Enhanced electrochemical response of boron-doped diamond electrodes brought on by a cathodic surface pre-treatment. Electrochim Acta 49(22–23):4021–4026. doi:10.1016/j.electacta.2004.01.082 ANP—Agência Nacional de Petróleo Gás Natural e Biocombustível. Resolução nº. 7 ddmdDRTn. Samec Z, Mareček V, Koryta J, Khalil MW (1977) Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry. J Electroanal Chem Interfacial Electrochem 83(2):393–397. doi:10.1016/S0022-0728(77)80186-1 Ikonen M, Murtamaki L, Kontturi K (2007) An electrochemical method for the determination of liposome–water partition coefficients of drugs. J Electronal Chem 602:189–194. doi:10.1016/j.jelechem.2006.12.014 Laforge FO, Kakiuchi T, Shigematsu F, Mirkin MV (2006) SECM study of solute partitioning and electron transfer at the ionic liquid/water interface. Langmuir 22:10705–10710. doi:10.1021/la061203p Ahmedi R, Lanez T (2010) Calculation of octanol/water partition coefficients of ferrocene derivatives. Asian J Chem 22:299–306