Femtosecond Laser Technology for Solid-State Material Processing: Creation of Functional Surfaces and Selective Modification of Nanoscale Layers
Tóm tắt
Information on the rapidly increasing use of modification of solid-state materials surfaces by femtosecond laser pulses at moderate intensities (around 0.1–10 TW/cm2) is presented as applied to creation of functional surfaces with tailored thermophysical, hydrodynamic, and mechanical properties and in application to selective modification and removal of nanoscale (1–100 nm) layers of bulk and thin-film multilayer materials. The problems in obtaining functional surfaces with the externally controllable wetting behavior of superhydrophobic surfaces showing a self-cleaning effect and superhydrophilic surfaces with a controlled Leidenfrost temperature, critical heat flux, and heat transfer coefficient are considered for heat-transfer enhancement during the evaporation and boiling of the working fluid. Data on the hardening of the surface layer of structural materials and the synthesis of diamond-like films are given. The methods for the precision selective removal of nanoscale films and surface modification with the formation of subnanoscale structures are considered.
Tài liệu tham khảo
Abbey, B., Dilanian, R.A., Darmanin, C., Ryan, R.A., Putkunz, C.T., Martin, A.V., Quiney, H.M., et al., Sci. Adv., 2016, vol. 2, no. 9, E1601186.
Potter, E.D., Herek, J.L., Pedersen, S., Liu, Q., and Zewail, A.H., Nature, 1992, vol. 355, p. 66.
Meesat, R., Belmouaddine, H., Allard, J.-F., Tanguay-Renaud, C., Lemay, R., Brastaviceanu, T., Houde, D., et al., Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 38, p. E2508.
Zhu, Y. and He, H., Biomed. Opt. Express, 2017, vol. 8, no. 11, p. 4965.
Rodriguez, R. and Redman, R., J. Exp. Bot., 2008, vol. 59, no. 5, p. 1109.
Dmitriev, A.S., Vvedenie v nanoteplofiziku (Introduction to Nanothermophysics), Moscow: BINOM, 2015.
Dmitriev, A.S. and Mikhailova, I.A., Vvedenie v nanoenergetiku (Introduction to Nanoenergetics), Moscow: Mosk. Energ. Inst., 2011.
Vorobyev, A. and Guo, C., Laser Photon. Rev., 2013, vol. 7, p. 385.
Ashitkov, S.I., Romashevskii, S.A., Komarov, P.S., Burmistrov, A.A., Zhakhovskii, V.V., Inogamov, N.A., and Agranat, M.B., Quantum Electron., 2015, vol. 45, no. 6, p. 547.
Vorobyev, A. and Guo, C., Opt. Express, 2006, vol. 14, no. 6, p. 2164.
Tull, B., Carey, J., Mazur, E., McDonald, J., and Yalisove, S., MRS Bull., 2006, vol. 31, p. 626.
Romashevskiy, S.A., Ashitkov, S.I., Ovchinnikov, A.V., Kondratenko, P.S., and Agranat, M.B., Appl. Surf. Sci., 2016, vol. 374, p. 12.
Shi, X., Li, X., Jiang, L., Qu, L., Zhao, Y., Ran, P., Wang, Q., Cao, Q., Ma, T., and Lu, Y., Sci. Rep., 2015, vol. 5, p. 17557.
Wang, Z.K., Zheng, H.Y., and Xia, H.M., Microfluid. Nanofluid., 2011, vol. 10.
Chang, T.-L., Chen, C.-Y., and Wang, C.-P., Microelectron. Eng., 2013, vol. 110, p. 381.
Streubel, R., Bendt, G., and Gökce, B., Nanotecnology, 2016, vol. 27, 205602.
Zhang, X., Liu, H., Huang, X., and Jiang, H., J. Mater. Chem. C, 2015, vol. 3, p. 3336.
Bonse, J., Brzezinka, K.-W., and Meixner, A.J., Appl. Surf. Sci., 2004, vol. 221, p. 215.
Linde, D. and Sokolowski-Tinten, K., Appl. Surf. Sci., 2000, vols. 154–155, p. 1.
Younkin, R., Carey, J.E., Mazur, E., Levinson, J.A., and Friend, C.M., J. Appl. Phys., 2003, vol. 93, p. 2626.
Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Langmuir, 2013, vol. 29, p. 9798.
Kruse, C., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Int. J. Heat Mass Transfer, 2015, vol. 82, p. 109.
Kruse, C., Somanas, I., Anderson, T., Wilson, C., Zuhlke, C., Alexander, D., Gogos, G., and Ndao, S., Microfluid. Nanofluid., 2015, vol. 18, no. 5, p. 1417.
Vorobyev, A. and Guo, C., Appl. Phys. Lett., 2009, vol. 94, 224102.
Vorobyev, A.Y. and Guo, C., J. Appl. Phys., 2015, vol. 117, 033103.
Vorobyev, A. and Guo, C., Opt. Express, 2010, vol. 18, p. 6455.
Baldacchini, T., Carey, J.E., Zhou, M., and Mazur, E., Langmuir, 2006, vol. 22, no. 11, p. 4917.
Wu, B., Zhou, M., Li, J., Ye, X., Li, G., and Cai, L., Appl. Surf. Sci., 2009, vol. 256, p. 61.
Zorba, V., Persano, L., Pisignano, D., Athanassiou, A., Stratakis, E., Cingolani, R., Tzanetakis, P., and Fotakis, C., Nanotecnology, 2006, vol. 17, p. 3234.
Barberoglou, M., Zorba, V., Stratakis, E., Spanakis, E., Tzanetakis, P., Anastasiadis, S.H., and Fotakis, C., Appl. Surf. Sci., 2009, vol. 255, p. 5425.
Frysali, M.A., Papoutsakis, L., Kenanakis, G., and Anastasiadis, S.H., J. Phys. Chem. C, 2015, vol. 119, p. 25401.
Bizi-Bandoki, P., Benayoun, S., Valette, S., Beaugiraud, B., and Audouard, E., Appl. Surf. Sci., 2011, vol. 257, p. 5213.
Paradisanos, I., Fotakis, C., Anastasiadis, S.H., and Stratakis, E., Appl. Phys. Lett., 2015, vol. 107, 111603.
Romashevskiy, S.A., Agranat, M.B., and Dmitriev, A.S., High Temp., 2016, vol. 54, no. 3, p. 461.
Romashevskiy, S.A. and Ovchinnikov, A.V., High Temp., 2018, vol. 56, no. 1, p. 4.
Agranat, M.B., Ashitkov, S.I., Ovchinnikov, A.V., and Romashevskii, S.A., RF Patent 2015106949, 2015.
Peyre, P., Berthe, L., Scherpereel, X.P., and Fabbro, R., Mater. Sci., 1998, vol. 33, p. 1421.
Sano, Y., Obata, M., Kubo, T., Mukai, N., Yoda, M., Masaki, K., and Ochi, Y., Sci. Eng. A, 2006, vol. 417, p. 334.
Cheng, G.J., Pirzada, D., and Zhou, M., J. Appl. Phys., 2007, vol. 101, 063108.
Gao, H. and Cheng, G.J., J. Microelectromech. Syst., 2010, vol. 19, no. 2, p. 273.
Zhou, J.Z., Yang, J.C., Zhang, Y.K., and Zhou, M., J. Mater. Process. Technol., 2002, vol. 129, p. 241.
Zhou, M., Zhang, Y.K., and Cai, L., Appl. Phys. A, 2003, vol. 77, p. 549.
Zheng, C., Sun, S., Ji, Z., and Wang, W., Appl. Surf. Sci., 2010, vol. 257, p. 1589.
Ocaña, J.L., Morales, M., Molpeceres, C., and Porro, J.A., Proc. SPIE, 2006, vol. 6346, p. 63461.
Nie, X., He, W., Li, Q.-P., Long, N., and Chai, Y., J. Laser Appl., 2013, vol. 25, 042001.
Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Beranger, G., and Lemaitre, C., Mater. Sci. Eng., A, 2000, vol. 280.
Yilbas, B.S., Shuja, S.Z., Arif, A., and Gondal, M.A., J. Mater. Process. Technol., 2003, vol. 135, p. 6.
Yakimets, I., Richard, C., Beranger, G., and Peyre, P., Wear, 2004, vol. 256, p. 311.
Aldajah, S.H., Ajayi, O.O., Fenske, G.R., and Xu, Z., J. Tribol., 2005, vol. 127, p. 596.
Farrahi, G.H. and Ghadbeigi, H., J. Mater. Process. Technol., 2006, vol. 174, p. 318.
Fairand, B.P., Wilcox, B.A., Gallagher, W.J., and Williams, D.N., J. Appl. Phys., 1972, vol. 43, no. 9, p. 3893.
Peyre, P., Fabbro, R., Merrien, P., and Lieurade, H.P., Mater. Sci. Eng., A, 1996, vol. 210, p. 102.
Hong, Z. and Chengye, Y., Mater. Sci. Eng., A, 1998, vol. 257, p. 322.
Rubio-González, C., Ocaña, J.L., Gomez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J., and Morales, M., Mater. Sci. Eng., A, 2004, vol. 386, p. 291.
Tan, Y., Wu, G., Yang, J.M., and Pan, T., Fatigue Fract. Eng. Mater. Struct., 2004, vol. 27, p. 649.
Forget, P., Strudel, J.L., Jeandin, M., Lu, J., and Castex, L., Mater. Manuf. Processes, 1990, vol. 5, p. 501.
Hammersley, G., Hackel, L.A., and Harris, F., Opt. Lasers Eng., 2000, vol. 34, p. 327.
Kaspar, J., Luft, A., and Skrotzki, W., Cryst. Res. Technol., 2000, vol. 35, p. 437.
Wenwu, Z., Lawrence Yao, Y., and Noyan, I.C., J. Manuf. Sci. Eng., 2004, vol. 126, p. 18.
See, D.W., Dulaney, J.L., Clauer, A.H., and Tenaglia, R.D., Surf. Eng., 2002, vol. 18, p. 32.
Tsujino, M., Sano, T., Ogura, T., Okoshi, M., Inoue, N., Ozaki, N., Kodama, R., Kobayashi, K.F., and Hirose, A., Appl. Phys. Express, 2012, vol. 5, 022703.
Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., Appl. Phys. Lett., 2014, vol. 105, 021902.
Valiev, R., Nat. Mater., 2004, vol. 3, p. 511.
Matsuda, T., Sano, T., Arakawa, K., and Hirose, A., J. Appl. Phys., 2014, vol. 116, 183506.
Meyers, M.A., Jarmakani, H., Bringa, E.M., and Remington, B.A., in Dislocations in Solids, Hirth, J.P. and Kubin, L., Eds., Amsterdam: North-Holland, 2009, vol. 15, p. 91.
Demaske, B.J., Zhakhovsky, V.V., Inogamov, N.A., and Oleynik, I.I., Phys. Rev. B: Condens. Matter Mater. Phys., 2013, vol. 87, 054109.
Ham, R.K., Philos. Mag., 1961, vol. 6, p. 1183.
Nian, Q., Wang, Y., Yang, Y., Li, J., Zhang, M.Y., Shao, J., Tang, L., and Cheng, G.J., Sci. Rep., 2014, vol. 4, p. 6612.
Hartl, A., Schmich, E., Garrido, J.A., Hernando, J., Catharino, S.C.R., Walter, S., Feulner, P., Kromka, A., Steinmüller, D., and Stutzmann, M., Nat. Mater., 2004, vol. 3, p. 736.
Prawer, S. and Greentree, A.D., Science, 2008, vol. 320, p. 1601.
Nakagawa, K., Nishitani-Gamo, M., and Ando, T., Int. J. Hydrogen Energy, 2005, vol. 30, p. 201.
Wolters, J., Schell, A.W., Kewes, G., Nüsse, N., Schoengen, M., Döscher, H., Hannappe, T., Löchel, B., Barth, M., and Benson, O., Appl. Phys. Lett., 2010, vol. 97, no. 14, 141108.
May, P.W., Science, 2008, vol. 319, p. 1490.
Das, D. and Singh, R.N., Int. Mater. Rev., 2007, vol. 52, p. 29.
Corentin, L.G., Fabrice, B., Tetsuo, I., Ohfuji, H., and Rouzaud, J.-N., Carbon, 2007, vol. 45, p. 636.
Irifune T., Kurio A., Sakamoto, S. Inoue, T., and Sumiya, H., Nature, 2003, vol. 421, no. 6923, p. 599.
Greiner, N.R., Phillips, D.S., Johnson, J.D., and Volk, F., Nature, 1988, vol. 333, no. 6172, p. 440.
Angus, J.C., Will, H.A., and Stanko, W.S., J. Appl. Phys., 1968, vol. 39, p. 2915.
Narayan, J., Godbole, V.P., and White, C.W., Science, 1991, vol. 252, p. 416.
Merkulov, V.I., Lowndes, D.H., Jellison Puretzky, A.A., and Geohegan, D.B., Appl. Phys. Lett., 1998, vol. 73, p. 2591.
Mistry, P., Turchan, M.C., Shengzhong, L., Granse, G.O., Baurmann, T., and Shara, M.G., Mater. Res. Innovations, 1997, vol. 1, p. 149.
Varnin, V.P., Laptev, V.A., and Ralchenko, V.G., Inorg. Mater., 2006, vol. 42, p. 1.
Sankaran, K.J., Chen, H.C., Sundaravel, B., Lee, C.Y., Tail, N.H., and Lin, I.N., Appl. Phys. Lett., 2013, vol. 102, 061604.
Liu, C., Xiao, X., Wang, J., and Shi, B., J. Appl. Phys., 2007, vol. 102, 074115.
Gaudin, J., Peyrusse, O., Chalupsky, J., Toufarova, M., Vysin, L., Hajkova, V., Sobierajski, R., and Burian, T., Phys. Rev. B: Condens. Matter Mater. Phys., 2012, vol. 86, 024103.
Hirsch, A., The era of carbon allotropes, Nature Materials, 2010, vol. 9, p. 868.
Robertson, J., Mater. Sci. Eng., R, 2002, vol. 37, p. 129.
Ferrari, A.C., Kleinsorge, B., Morrison, N.A., and Hart, A., J. Appl. Phys., 1999, vol. 85, p. 7191.
Canzado, L.G., Takai, K., Enoki, T., Endo, M., Kim, Y.A., Mizusaki, H., Jorio, A., Coelho, L.N., Magalhães-Paniago, R., and Pimenta, M.A., Appl. Phys. Lett., 2006, vol. 88, 163106.
Takai, T., Oga, M., Sato, H., Enoki, T., Ohki, Y., Taomoto, A., Suenaga, K., and Iijima, S., Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 67, 214202.
Mcculloch, D.C., Gerstner, E.G., Mckenzie, D.R., Prawer, S., and Kalish, R., Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 52, p. 850.
Linang, Y., Mera, Y., and Maeda, K., Diamond Relat. Mater., 2008, vol. 17, no. 18, p. 137.
Kononenko, T.V., Pimenov, S.M., Kononenko, V.V., Romano, V., Lüthy, W., and Konov, V.I., Appl. Phys. A, 2009, vol. 97, p. 543.
Bonse, J., Rosenfeld, A., and Krüger, J., Appl. Surf. Sci., 2011, vol. 257, p. 5420.
Höhm, S., Herzlieb, M., Rosenfeld, A., Krüger, J., and Bonse, J., Opt. Express, 2015, vol. 23, p. 61.
Emel’yanov, V.I., Danilov, P.A., Zayarnyi, D.A., Ionin, A.A., Kudryashov, S.I., Makarov, S.V., Rudenko, A.A., Shikunov, D.I., and Yurovskikh, V.I., JETP Lett., 2014, vol. 100, no. 3, p. 145.
Borowiec, A., Mackenzie, M., Weatherly, G.C., and Haugen, H.K., Appl. Phys. A, 2003, vol. 76, p. 201.
Crawford, T.H., Yamanaka, J., Botton, G.A., and Haugen, H.K., J. Appl. Phys., 2008, vol. 103, 053104.
Borowiec, A., Mackenzie, M., Weatherly, G.C., and Haugen, H.K., Appl. Phys. A, 2004, vol. 77, p. 411.
Couillard, M., Borowiec, A., Haugen, H.K., Preston, J.S., Griswold, E.M., and Botton, G.A., J. Appl. Phys., 2007, vol. 101, 033519.
Bonse, J., Appl. Phys. A, 2006, vol. 84, p. 63.
Eizenkop, J., Avrutsky, I., Auner, G., Georgiev, D.G., and Chaudhary, V., J. Appl. Phys., 2007, vol. 101, 094301.
Bonse, J., Baudach, S., Krüger, J., Kautek, W., and Lenzner M., Appl. Phys. A, 2002, vol. 74, p. 19.
Kelly, R. and Miotello, A., Contribution of vaporization and boiling to thermal-spike sputtering by ions or laser pulses, Phys. Rev. E:, 1999, vol. 60, p. 2616.
Ashitkov, S.I., Inogamov, N.A., Zhakhovskii, V.V., Emirov, Yu.N., Agranat, M.B., Oleinik, I.I., Anisimov, S.I., and Fortov, V.E., JETP Lett., 2012, vol. 95, no. 4, p. 176.
Romashevskiy, S.A., Ashitkov, S.I., and Dmitriev, A.S., Tech. Phys. Lett., 2016, vol. 42, no. 15, p. 78.
Romashevskiy, S.A., Ashitkov, S.I., and Agranat, M.B., Appl. Phys. Lett., 2016, vol. 109, 261601.
Agranat, M.B., Anisimov, S.I., Ashitkov, S.I., Zhakhovskii, V.V., Inogamov, N.A., Nishihara, K., Petrov, Yu.V., Fortov, V.E., and Khokhlov, V.A., Appl. Surf. Sci., 2007, vol. 253, p. 6276.
Gudde, J., Hohlfeld, J., Muller, J.G., and Matthias, E., Appl. Surf. Sci., 1998, vols. 127–129, p. 40.
Inogamov, N.A., Petrov, Yu.V., Khokhlov, V.A., Anisimov, S.I., Zhakhovskii, V.V., Ashitkov, S.I., Komarov, P.S., Agranat, M.B., Fortov, V.E., Migdal, K.P., Il’nitskii, D.K., and Emirov, Yu.N., J. Opt. Technol., 2014, vol. 81, no. 5, p. 233.
Murphy, R.D., Torralva, B., and Yalisove, S.M., Appl. Phys. Lett., 2013, vol. 102, 181602.
Ostendorf, A., et al., Selective ablation of thin films by pulsed laser, in Fundamentals of Laser-Assisted Microand Nanotechnologies, Veiko, V.P. and Konov, V.I., Eds., Springer, 2014, vol. 195, p. 201.
Bovatsek, J., Tamhankar, A., Patel, R.S., Bulgakova, N.M., and Bonse, J., Thin Solid Films, 2010, vol. 518, p. 2897.
Compaan, A.D., Matulionis, I., and Nakade, S., Opt. Laser Eng., 2000, vol. 34, p. 15.
Gower, M.C., Opt. Express, 2000, vol. 7, p. 56.
Grohe, A., Knorz, A., Nekarda, J., Jäger, U., Mingirulli, N., and Preu, R., Proc. SPIE, 2009, vol. 7202, 72020.
Kray, D., Hopman, S., Spiegel, A., Richerzhagen, B., and Willeke, G.P., Sol. Energy Mater. Sol. Cells, 2007, vol. 91, p. 1638.
Grohe, A., Preu, R., Glunz, S.W., and Willeke, G.P., Proc. SPIE, 2006, vol. 6197, 619717.
Van Kerschaver, E. and Beaucarne, G., Prog. Photovoltaics: Res. Appl., 2006, vol. 14, p. 107.
Schneiderlöchner, E., Preu, R., Ludemann, R., and Glunz, S.W., Prog. Photovoltaics: Res. Appl., 2002, vol. 10, p. 29.
Sugianto, A., Bovatsek, J., Wenham, S., Tjahjono, B., Guangqi, X., Yu, Y., Hallam, B., Xue, B., Kuepper, N., Chong, C.M., and Patel, R., in Proc. the 35th IEEE Photovoltaic Specialists Conference, 2010, p. 689.
Blecher, J.J., Palmer, T.A., Reutzel, E.W., and Debroy, T., J. Appl. Phys., 2012, vol. 112, 114906.
Blecher, J.J., Palmer, T.A., Reutzel, E.W., and Debroy, T., J. Appl. Phys., 2012, vol. 112, 114907.
Geier, M., Eberstein, M., Grießmann, H., Partsch, U., Völkel, L., Böhme, R., Mann, G., Bonse, J., and Krüger, J., in Proc. 26th European Photovoltaic Solar Energy Conf., 2011, p. 1243.
Rana, V., Zhang, Z., Lazik, C., Mishra, R., Weidman, T., and Eberspacher, C., in Proc. 23rd European Photovoltaic Solar Energy Conference, 2008, p. 1942.
Correia, S.A.G.D., Lossen, J., Wald, M., Neckermann, K., and Bähr, M., in Proc. 22nd European Photovoltaic Solar Energy Conference, 2007, p. 1061.
Knorz, A., Peters, M., Grohe, A., Harmel, C., and Preu, R., Prog. Photovoltaics: Res. Appl., 2009, vol. 17, p. 127.
Schoonderbeek, A., Schütz, V., Haupt, O., and Stute, U., J. Laser Micro/Nanoeng., 2010, vol. 5, p. 248.
Hermann, S., Dezhdar, T., Harder, N.-P., Brendel, R., Seibt, M., and Stroj, S., J. Appl. Phys., 2010, vol. 108, 114514.
Bähr, M., Heinrich, G., Stolberg, K.-P., Wütherich, T., and Böhme, R., in Proc. 25th European Photovoltaic Solar Energy Conference and Exhibition, 2010, p. 2490.
Heinrich, G., Bähr, M., Stolberg, K., Wütherich, T., Leonhardt, M., and Lawerenz, A., Energy Procedia, 2011, vol. 8, p. 592.
Stolberg, K., Friedel, S., Kremser, B., Leitner, M., and Atsuta, Y., J. Laser Micro/Nanoeng., 2010, vol. 5, p. 125.
Rublack, T. and Seifert, G., Opt. Mater. Express, 2011, vol. 1, p. 543.
Bonse, J., Mann, G., Krüger, J., Marcinkowski, M., and Eberstein, M., Thin Solid Films, 2013, vol. 542, p. 420.
Moreno, M. and Boubekri, R., Sol. Cells, 2012, vol. 100, p. 16.
Nakada, T. and Shirakata, S., Sol. Cells, 2011, vol. 95, p. 1463.
Lemke, A., Ashkenasi, D., and Eichler, H.J., Phys. Procedia, 2013, vol. 41, p. 769.
Wei, Z., Bobbili, P.R., Senthilarasu, S., Shimell, T., and Upadhyaya, H.M., Surf. Coat. Technol., 2014, vol. 241, p. 159.
Gloeckler, M. and Sites, J.R., J. Phys. Chem. Solids, 2005, vol. 66, p. 1891.
Gorji, N.E., Reggiani, U., and Sandrolini, L., Sol. Energy, 2012, vol. 86, p. 920.
Çelen, S., Opt. Laser Technol., 2012, vol. 44, p. 2043.
Chang, G. and Tu, Y., Opt. Lasers Eng., 2012, vol. 50, p. 767.
Kudrius, T., Šlekys, G., and Juodkazis, S., J. Phys. D: Appl. Phys., 2010, vol. 43, 145501.
Chang, T.L., Tsai, T.K., Yang, H.P., and Huang, J.Z., Microelectron. Eng., 2012, vol. 98, p. 684.
Nayak, B.K. and Gupta, M.C., Opt. Lasers Eng., 2010, vol. 48, p. 940.
Chang, C.W., Chen, C.Y., Chang, T.L., Ting, C.J., Wang, C.P., and Chou, C.P., Appl. Phys. A, 2012, vol. 109, p. 441.
Mubarok, F. and Espallargas, N., Tribol. Int., 2015, vol. 85, p. 56.
Chen, C.-Y. and Chang, T.-L., Microelectron. Eng., 2015, vol. 143, p. 41.
Hubler, A.C., Schmidt, G.C., Kempa, H., Reuter, K., Hambsch, M., and Bellmann, M., Org. Electron., 2011, vol. 12, p. 419.
Azarova, N.A., Owen, J.W., Mclellan, C.A., Grimminger, M.A., Chapman, E.K., Anthony, J.E., and Jurshescu, O.D., Org. Electron., 2010, vol. 11, p. 1960.
Gallais, L., Bergeret, E., Wang, B., Guerin, M., and Benevent, M., Appl. Phys. A, 2014, vol. 115, p. 177.
Morgan, T.D., Anderson, D.P., and Kim, P., J. Appl. Electrochem., 1994, vol. 24, p. 18.
Satta, A., Shamiryan, D., Baklanov, M.R., Whelan, C.M., Le, Q.T., Beyer, G.P., Vantomme, A., Maex, K., Vantomme, A., and Maex, K., J. Electrochem. Soc., 2003, vol. 150, no. 5, p. 300.
Changho, S., Daehwan, A., and Dongsik, K., Appl. Surf. Sci., 2015, vol. 349, p. 361.
Haight, R., Wagner, A., Longo, P., and Lim, D., Proc. SPIE, 2005, vol. 5714, p. 24.
Zhao, Q.Z., Qiu, J.R., Jiang, X.W., Dai, E.W., Zhou, C.H., and Zhu, C.S., Opt. Express, 2005, vol. 13, p. 2089.
Park, M., Chon, B.H., Kim, H.S., Jeoung, S.C., Kim, D., Lee, J.I., Chu, H.Y., and Kim, H.R., Opt. Lasers Eng., 2006, vol. 44, p. 138.
Dowding, C.F. and Lawrence, J., J. Eng. Manuf., 2010, vol. 224, p. 753.
Zoppel, S., Huber, H., and Reider, G.A., Appl. Phys. A, 2007, vol. 89, p. 161.
Dong, Y., Sakata, H., and Molian, P., Appl. Surf. Sci., 2005, vol. 252, p. 352.
Banks, D.P., Grivas, C., Mills, J.D., Eason, R.W., and Zergioti, L., Appl. Phys. Lett., 2006, vol. 89, 193107.
Klini, A., Loukakos, P.A., Gray, D., Manousaki, A., and Fotakis, C., Opt. Express, 2008, vol. 16, p. 11300.
Beyer, S., Tornari, V., and Gornicki, D., Proc SPIE, 2003, vol. 5063, p. 202.
Venkatakrishnan, K., Ngoi, B.K.A., Stanley, P., Lim, L.E.N., Tan, B., and Sivakumar, N.R., Appl. Phys. A, 2002, vol. 74, p. 493.
Wenjun, W., Xuesong, M., Gedong, J., Kedian, W., and Chengjuan, Y., Opt. Laser Technol., 2012, vol. 44, p. 153.
Ando, E. and Suzuki, S., J. Non-Cryst. Solids, 1997, vol. 218, p. 68.
Dini, J.W., Electrodeposition: The Materials Science of Coatings and Substrates, Park Ridge, NJ: Noyes, 1993.
Domke, M., Nobile, L., Rapp, S., Eiselen, S., Sotrop, J., Huber, H.P., and Schmidt, M., Phys. Procedia, 2014, vol. 56, p. 1007.