Female sex, high soluble CD163, and low HDL-cholesterol were associated with high galectin-3 binding protein in type 1 diabetes
Tóm tắt
Galectin-3 binding protein (Gal3BP), sCD163, galectin-3, and depression have been linked to cardiovascular disease and mortality. In patients with type 1 diabetes, female sex has also been linked to cardiovascular disease and mortality. The aim was to explore whether female sex, sCD163, galectin-3, and depression were associated with Gal3BP in patients with type 1 diabetes. We adjusted for metabolic variables, creatinine, smoking, physical inactivity, and cardiovascular disease. Cross-sectional design. Patients with type 1 diabetes (n = 285, women 44%, age18–59 years, diabetes duration 1–55 years) were consecutively recruited from one diabetes outpatient clinic. Blood samples, anthropometrics, and blood pressure were collected, supplemented with data from electronic medical records. High Gal3BP was defined as ≥3.3 mg/l (≥80th percentile). Depression was assessed by a self-report instrument. Linear and logistic regression models were elaborated for the associations and calibrated and validated for goodness of fit with the data variables. Median (q1, q3) Gal3BP was 2.3 (1.8, 3.1) mg/l. The prevalence of high Gal3BP for women was 30% and 14% for men (p = 0.001). Female sex (adjusted odds ratio (AOR) 3.0), sCD163 (per μg/l) (AOR 6.6), and total cholesterol (per mmol/l) (AOR 1.6) were positively associated with high Gal3BP, and HDL-cholesterol (per mmol/l) (AOR 0.2) was negatively associated with high Gal3BP. High Gal3BP levels were associated with female sex, increasing sCD163 and total cholesterol levels, and decreasing HDL-cholesterol levels in patients with type 1 diabetes. The prevalence of high Gal3BP was more than twice as high in the women as in the men.
Tài liệu tham khảo
Katsarou A, Gudbjörnsdottir S, Rawshani A, Dabelea D, Bonifacio E, Anderson BJ, et al. Type 1 diabetes mellitus. Nat Rev Dis Primer. 2017;3:17016. https://doi.org/10.1038/nrdp.2017.16.
Larsson SC, Wallin A, Håkansson N, Stackelberg O, Bäck M, Wolk A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int J Cardiol. 2018;262:66–70. https://doi.org/10.1016/ijcard2018.03.099.
Colhoun HM, Rubens MB, Underwood SR, Fuller JH. The effect of type 1 diabetes mellitus on the gender difference in coronary artery calcification. J Am Coll Cardiol. 2000;36(7):2160–7. https://doi.org/10.1016/S0735-1097(00)00986-4.
Lind M, Svensson A-M, Kosiborod M, Gudbjörnsdottir S, Pivodic A, Wedel H, et al. Glycemic control and excess mortality in type 1 diabetes. N Engl J Med. 2014;371:1972–82. https://doi.org/10.1056/NEJMoa1408214.
Shaked I, Hanna DB, Gleißner C, Marsh B, Plants J, Tracy D, et al. Macrophage inflammatory markers are associated with subclinical carotid artery disease in women with human immunodeficiency virus or hepatitis C virus infection. Arterioscler Thromb Vasc Biol. 2014;34:1085–92. https://doi.org/10.1161/ATVBAHA.113.303153.
Koths K, Taylor E, Halenbeck R, Casipit C, Wang A. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J Biol Chem. 1993;268:14245–9.
Grassadonia A, Tinari N, Iurisci I, Piccolo E, Cumashi A, Innominato P, et al. 90K (Mac-2 BP) and galectins in tumor progression and metastasis. Glycoconj J. 2002;19:551–6.
Gleissner CA, Erbel C, Linden F, Domschke G, Akhavanpoor M, Helmes CM, et al. Galectin-3 binding protein, coronary artery disease and cardiovascular mortality: insights from the LURIC study. Atherosclerosis. 2017;260:121–9. https://doi.org/10.1016/j.atherosclerosis.2017.03.031.
Henderson NC, Sethi T. The regulation of inflammation by galectin-3. Immunol Rev. 2009;230:160–71.
Ho JE, Liu C, Lyass A, Courchesne P, Pencina MJ, Vasan RS, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60:1249–56.
Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JP, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110:3121–8. https://doi.org/10.1161/01.CIR.0000147181.65298.4D.
Kusaka H, Yamamoto E, Hirata Y, Fujisue K, Tokitsu T, Sugamura K, et al. Clinical significance of plasma galectin-3 in patients with coronary artery disease. Int J Cardiol. 2015;201:532–4.
Tan KC, Cheung C, Lee AC, Lam JK, Wong Y, Shiu SW. Galectin-3 and risk of cardiovascular events and all-cause mortality in type 2 diabetes. Diabetes Metab Res Rev. 2019;35:3093.
Kristiansen M, Graversen JH, Jacobsen C, Sonne O, Hoffman H-J, Law SA, et al. Identification of the haemoglobin scavenger receptor. Nature. 2001;409:198–201. https://doi.org/10.1038/35051594.
Møller HJ. Soluble CD163. Scand J Clin Lab Invest. 2012;72:1–13. https://doi.org/10.3109/00365513.2011.626868.
Ilter A, Orem C, Yucesan FB, Sahin M, Hosoglu Y, Kurumahmutoglu E, et al. Evaluation of serum sTWEAK and sCD163 levels in patients with acute and chronic coronary artery disease. Int J Clin Exp Med. 2015;8:9394.
Parkner T, Sørensen L, Nielsen A, Fischer C, Bibby BM, Nielsen S, et al. Soluble CD163: a biomarker linking macrophages and insulin resistance. Diabetologia. 2012;55:1856–62. https://doi.org/10.1007/s00125-012-2533-1.
Fjeldborg K, Christiansen T, Bennetzen M, Møller JH, Pedersen SB, Richelsen B. The macrophage-specific serum marker, soluble CD163, is increased in obesity and reduced after dietary-induced weight loss. Obesity. 2013;21:2437–43. https://doi.org/10.1002/oby.20376.
Al-Daghri NM, Al-Attas OS, Bindahman LS, Alokail MS, Alkharfy KM, Draz HM, et al. Soluble CD163 is associated with body mass index and blood pressure in hypertensive obese Saudi patients. Eur J Clin Investig. 2012;42:1221–6. https://doi.org/10.1111/j.1365-2362.2012.02714.x.
Melin EO, Dereke J, Thunander M, Hillman M. Soluble CD163 was linked to galectin-3, diabetic retinopathy and antidepressants in type 1 diabetes. Endocr Connect. 2018;1 https://doi.org/10.1530/EC-18-0336.
Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31. https://doi.org/10.1016/j.it.2005.11.006.
Egede LE, Nietert PJ, Zheng D. Depression and all-cause and coronary heart disease mortality among adults with and without diabetes. Diabetes Care. 2005;28:1339–45. https://doi.org/10.2337/diacare.28.6.1339.
Melin EO, Dereke J, Thunander M, Hillman M. Depression in type 1 diabetes was associated with high levels of circulating galectin-3. Endocr Connect. 2018;7:819–28. https://doi.org/10.1530/EC-18-0108.
Melin EO, Thunander M, Svensson R, Landin-Olsson M, Thulesius HO. Depression, obesity and smoking were independently associated with inadequate glycemic control in patients with type 1 diabetes. Eur J Endocrinol. 2013;168:861–9. https://doi.org/10.1530/eje-13-0137.
Melin EO, Thunander M, Landin-Olsson M, Hillman M, Thulesius HO. Depression, smoking, physical inactivity and season independently associated with midnight salivary cortisol in type 1 diabetes. BMC Endocr Disord. 2014;14:75. https://doi.org/10.1186/1472-6823-14-75.
Melin EO, Thulesius HO, Hillman M, Svensson R, Landin-Olsson M, Thunander M. Lower HDL-cholesterol, a known marker of cardiovascular risk, was associated with depression in type 1 diabetes: a cross sectional study. Lipids Health Dis. 2019;18:65. https://doi.org/10.1186/s12944-019-1009-4.
Purnell JQ, Hokanson JE, Cleary PA, Nathan DM, Lachin JM, Zinman B, et al. The effect of excess weight gain with intensive diabetes treatment on cardiovascular disease risk factors and atherosclerosis in type 1 diabetes: results from the Diabetes Control and Complications Trial / Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) study. Circulation. 2013;127:180–7. https://doi.org/10.1161/CIRCULATIONAHA.111.077487.
Melin EO, Thulesius HO, Hillman M, Landin-Olsson M, Thunander M. Abdominal obesity in type 1 diabetes associated with gender, cardiovascular risk factors and complications, and difficulties achieving treatment targets: a cross sectional study at a secondary care diabetes clinic. BMC Obes. 2018;5:15. https://doi.org/10.1186/s40608-018-0193-5.
Melin EO, Svensson R, Thunander M, Hillman M, Thulesius HO, Landin-Olsson M. Gender, alexithymia and physical inactivity associated with abdominal obesity in type 1 diabetes mellitus: a cross sectional study at a secondary care hospital diabetes clinic. BMC Obes. 2017;4:21. https://doi.org/10.1186/s40608-017-0157-1.
Dereke J, Nilsson J, Nilsson C, Strevens H, Landin-Olsson M, Hillman M. Soluble CD163 and TWEAK in early pregnancy gestational diabetes and later glucose intolerance. PLoS One. 2019;14:0216728. https://doi.org/10.1371/journal.pone.0216728.
Lasnier E, Mario N, Boque M-C, You S-N, Vaubourdolle M. Evaluation of the clinical chemistry analyser Olympus AU400. Clin Chem Lab Med. 2000;38:1043–9. https://doi.org/10.1515/CCLM.2000.155.
Ridker PM. LDL cholesterol: controversies and future therapeutic directions. Lancet. 2014;384:607–17. https://doi.org/10.1016/S0140-6736(14)61009-6.
Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health: Association for Weight Management and Obesity Prevention; NAASO, The Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity. 2007;15:1061–7. https://doi.org/10.1038/oby.2007.632.
Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67:361–70. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x.
The National Board of Health and Welfare. Swedish National Guidelines for Diabetes. 2009.
Kato S, Chmielewski M, Honda H, Pecoits-Filho R, Matsuo S, Yuzawa Y, et al. Aspects of immune dysfunction in end-stage renal disease. Clin J Am Soc Nephrol. 2008;3:1526–33. https://doi.org/10.2215/CJN.00950208.
Correale M, Giannuzzi V, Iacovazzi P, Valenza M, Lanzillotta S, Abbate I, et al. Serum 90K/MAC-2BP glycoprotein levels in hepatocellular carcinoma and cirrhosis. Anticancer Res. 1999;19:3469–72.
Giansanti F, Capone E, Ponziani S, Piccolo E, Gentile R, Lamolinara A, et al. Secreted Gal-3BP is a novel promising target for non-internalizing antibody–drug conjugates. J Control Release. 2019;294:176–84.
American Diabetes Association. 9. Cardiovascular disease and risk management: standards of medical care in diabetes—2018. Diabetes Care. 2018;41:S86–104.
Messner B, Bernhard D. Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 2014;34:509–15.
Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29. https://doi.org/10.1016/S0140-6736(12)61031-9.
Purnamawati K, Ong JA-H, Deshpande S, Tan WK-Y, Masurkar N, Low JK, et al. The importance of sex stratification in autoimmune disease biomarker research: a systematic review. Front Immunol. 2018;9 https://doi.org/10.3389/fimmu.2018.01208.
Grassadonia A, Tinari N, Fiorentino B, Suzuki K, Nakazato M, De Tursi M, et al. The 90K protein increases major histocompatibility complex class I expression and is regulated by hormones, γ-interferon, and double-strand polynucleotides. Endocrinology. 2004;145:4728–36.
Rosenson RS, Brewer HB Jr, Ansell BJ, Barter P, Chapman MJ, Heinecke JW, et al. Dysfunctional HDL and atherosclerotic cardiovascular disease. Nat Rev Cardiol. 2016;13:48.