Feedback stabilization of a class of evolution equations with delay
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ammari K. and Tucsnak M. (2001). Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM COCV. 6: 361–386
Ammari K. and Tucsnak M. (2000). Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control. Optim. 39: 1160–1181
Ammari K. and Tucsnak M. (2001). Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asy. Anal. 28: 215–240
Ammari K., Liu Z. and Tucsnak M. (2002). Decay rates for a beam with pointwise force and moment feedback, Mathematics of Control. Signals, and Systems 15: 229–255
Ammari K. (2002). Dirichlet boundary stabilization of the wave equation. Asy. Anal. 30: 117–130
Bátkai A., Piazzera S., Damped wave equations with delay, Topics in functional differential and difference equations (Lisbon, 1999), 51–61, Fields Inst. Commun., 29, Amer. Math. Soc., Providence, RI, 2001.
Bátkai, A., Second Order Cauchy Problems with damping delay, Thesis, Tübingen 2000.
Bardos C., Lebeau G. and Rauch J. (1992). Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control. Optim. 30: 1024–1065
Bardos C., Halpern L., Lebeau G., Rauch J. and Zuazua E. (1991). Stabilisation de l’équation des ondes au moyen d’un feedback portant sur la condition aux limites de Dirichlet. Asy. Anal. 4: 285–291
Benavides Guzman R. and Tucsnak M. (2003). Energy decay estimates for the damped plate equation with a local degenerated dissipation. Systems Control Lett. 48: 191–197
Chen G. (1979). Control and stabilization for the wave equation in a bounded domain, Part I. SIAM J. Control Optim. 17: 66–81
Chen G. (1981). Control and stabilization for the wave equation in a bounded domain, Part II. SIAM J. Control Optim. 19: 114–122
Datko R. (1988). Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26: 697–713
Datko R. (1997). Two examples of ill-posedness with respect to time delays revisited. IEEE Trans. Automat. Control. 42: 511–515
Datko R., Lagnese J. and Polis M.P. (1986). An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24: 152–156
Ingham A.E. (1936). Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41: 367–369
Lagnese J. (1983). Decay of solutions of the wave equations in a bounded region with boundary dissipation. J. Differential Equations 50: 163–182
Lagnese J. (1988). Note on boundary stabilization of wave equations. SIAM J. Control and Optim. 26: 1250–1256
Lasiecka I. and Triggiani R. (1987). Uniform exponential energy decay of wave equations in a bounded region with L 2(0,T;L 2(Γ))-feedback control in the Dirichlet boundary conditions. J. Differential Equations 66: 340–390
Komornik V. (1991). Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29: 197–208
Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, RAM: Res. Appl. Math. 36, Masson, Paris; John Wiley, Chichester, 1994.
Komornik V. and Zuazua E. (1990). A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69: 33–54
Nicaise S. and Pignotti C. (2006). Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45: 1561–1585
Nicaise S. and Valein J. (2007). Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Netw. Heterog. Media 2: 425–479
Rebarber R. (1995). Exponential stability of beams with dissipative joints: a frequency domain approach. SIAM J. Control Optim. 33: 1–28
Tucsnak M. (1996). Regularity and exact controllability for beam with piezoelectric actuator. SIAM J. control Optim. 34: 922–930
Xu G.Q., Yung S.P. and Li L.K. (2006). Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12: 770–785