Feedback stabilization of a class of evolution equations with delay

Journal of Evolution Equations - Tập 9 Số 1 - Trang 103-121 - 2009
E. M. Ait Benhassi1, Kaïs Ammari2, S. Boulite1, Lahcen Maniar1
1Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P. 2390, 40000, Marrakesh, Morocco
2Département de Mathématiques, Faculté des Sciences de Monastir, Université de Monastir, 5019, Monastir, Tunisia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ammari K. and Tucsnak M. (2001). Stabilization of second order evolution equations by a class of unbounded feedbacks. ESAIM COCV. 6: 361–386

Ammari K. and Khenissi M. (2005). Decay rates of the plate equations. Math. Nachr. 278: 1647–1658

Ammari K. and Tucsnak M. (2000). Stabilization of Bernoulli-Euler beams by means of a pointwise feedback force. SIAM J. Control. Optim. 39: 1160–1181

Ammari K. and Tucsnak M. (2001). Asymptotic behaviour of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asy. Anal. 28: 215–240

Ammari K., Liu Z. and Tucsnak M. (2002). Decay rates for a beam with pointwise force and moment feedback, Mathematics of Control. Signals, and Systems 15: 229–255

Ammari K. (2002). Dirichlet boundary stabilization of the wave equation. Asy. Anal. 30: 117–130

Bátkai A., Piazzera S., Damped wave equations with delay, Topics in functional differential and difference equations (Lisbon, 1999), 51–61, Fields Inst. Commun., 29, Amer. Math. Soc., Providence, RI, 2001.

Bátkai, A., Second Order Cauchy Problems with damping delay, Thesis, Tübingen 2000.

Bardos C., Lebeau G. and Rauch J. (1992). Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control. Optim. 30: 1024–1065

Bardos C., Halpern L., Lebeau G., Rauch J. and Zuazua E. (1991). Stabilisation de l’équation des ondes au moyen d’un feedback portant sur la condition aux limites de Dirichlet. Asy. Anal. 4: 285–291

Benavides Guzman R. and Tucsnak M. (2003). Energy decay estimates for the damped plate equation with a local degenerated dissipation. Systems Control Lett. 48: 191–197

Chen G. (1979). Control and stabilization for the wave equation in a bounded domain, Part I. SIAM J. Control Optim. 17: 66–81

Chen G. (1981). Control and stabilization for the wave equation in a bounded domain, Part II. SIAM J. Control Optim. 19: 114–122

Datko R. (1988). Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks. SIAM J. Control Optim. 26: 697–713

Datko R. (1997). Two examples of ill-posedness with respect to time delays revisited. IEEE Trans. Automat. Control. 42: 511–515

Datko R., Lagnese J. and Polis M.P. (1986). An example on the effect of time delays in boundary feedback stabilization of wave equations. SIAM J. Control Optim. 24: 152–156

Engel J.K. (1994). dissipative wave equations in Hilbert space. J. Math. Anal. Appl. 184: 302–316

Ingham A.E. (1936). Some trigonometrical inequalities with applications in the theory of series. Math. Z. 41: 367–369

Lagnese J. (1983). Decay of solutions of the wave equations in a bounded region with boundary dissipation. J. Differential Equations 50: 163–182

Lagnese J. (1988). Note on boundary stabilization of wave equations. SIAM J. Control and Optim. 26: 1250–1256

Lasiecka I. and Triggiani R. (1987). Uniform exponential energy decay of wave equations in a bounded region with L 2(0,T;L 2(Γ))-feedback control in the Dirichlet boundary conditions. J. Differential Equations 66: 340–390

Komornik V. (1991). Rapid boundary stabilization of the wave equation. SIAM J. Control Optim. 29: 197–208

Komornik, V., Exact Controllability and Stabilization. The Multiplier Method, RAM: Res. Appl. Math. 36, Masson, Paris; John Wiley, Chichester, 1994.

Komornik V. and Zuazua E. (1990). A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. 69: 33–54

Nicaise S. and Pignotti C. (2006). Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45: 1561–1585

Nicaise S. and Valein J. (2007). Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Netw. Heterog. Media 2: 425–479

Rebarber R. (1995). Exponential stability of beams with dissipative joints: a frequency domain approach. SIAM J. Control Optim. 33: 1–28

Tucsnak M. (1996). Regularity and exact controllability for beam with piezoelectric actuator. SIAM J. control Optim. 34: 922–930

Xu G.Q., Yung S.P. and Li L.K. (2006). Stabilization of wave systems with input delay in the boundary control. ESAIM Control Optim. Calc. Var. 12: 770–785

Zuazua E. (1990). Exponential decay for the semi-linear wave equation with locally distributed damping. Comm. Partial Differential Equations 15: 205–235