Feedback-invariant optimal control theory and differential geometry—I. Regular extremals

Springer Science and Business Media LLC - Tập 3 Số 3 - Trang 343-389 - 1997
Andrei Agrachev1, Р. В. Гамкрелидзе1
1Steklov Mathematical Institute, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. A. Agrachev, Quadratic mappings in geometric control theory. (Russian)Itogi Nauki i Tekhniki VINITI; Problemy Geometrii, Vol. 20, 1988.VINITI, Moscow, 111–205. (English translation:J. Soviet Math., Plenum Publ. Corp., Vol. 51, 1990, 2667–2734).

—, Topology of quadratic mappings and Hessians of smooth mappings. (Russian)Itogi Nauki i Tekhniki VINITI; Algebra, Topologia, Geometria, Vol. 26, 1988,VINITI, Moscow, 85–124. (English translation:J. Soviet Math., Plenum Publ. Corp., 1990, 990–1013).

A. A. Agrachev and R. V. Gamkrelidze, Exponential respresentation of flows and chronological calculus. (Russian)Mat. Sb. 107 (1978), 467–532. (English translation:Math. USSR Sb. 35 (1979), 727–785).

— The Morse index and the Maslov index for extremals of controlled systems. (Russian)Dokl. Akad. Nauk SSSR 287 (1986), 11–205. (English translation:Soviet Math. Dokl. 33 (1986), 392–395).

A. A. Agrachev, The extremality index and quasi-extremal controls. (Russian)Dokl. Acad. Nauk SSSR 284 (1985). (English translation:Soviet Math. Dokl. 32 (1985), 478–481.

A. A. Agrachev, The quasi-extremality for controlled systems. (Russian)Itogi Nauki i Tekhniki. VINITI; Sovremennye problemy matematiki. Novejshie dostigeniya, Vol. 35, 1989. (English translation:J. Soviet Math. Plenum Publ. Corp., 1991, 1849–1864.

A. A. Agrachev, Symplectic methods for optimization and control. (to appear in: Geometry of Feedback and Optimal Control,Marcel Dekker).

A. A. Agrachev, R. V. Gamkrelidze, and A. V. Sarychev, Local invariants of smooth control systems.Acta Appl. Math.,14 (1989), 191–237.

V. I. Arnold, Mathematical methods of classical mechanics, Third edition.Nauka, Moscow, 1989.

B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problems.SIAM J. Control and Optimiz.,29 (1991), 1300–1321.

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mischenko, Mathematical theory of optimal processes.Fiz.-mat. giz., Moscow, 1961.