Features of plane wave propagation along the layers of a prestrained nanocomposite
Tóm tắt
Từ khóa
Tài liệu tham khảo
L. M. Brekhovskikh, Waves in Layered Media [in Russian], Izd. AN SSSR, Moscow (1957).
A. I. Guz, Stability of Elastic Bodies under Finite Strains [in Russian], Naukova Dumka, Kyiv (1973).
A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], Naukova Dumka, Kyiv (1986).
A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).
A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).
A. I. Guz and L. M. Han, “Wave propagation in composite layered materials with large initial deformations,” Int. Appl. Mech., 12, No. 1, 1–7 (1976).
A. N. Guz, F. G. Makhort, O. I. Gushcha, and V. I. Lebedev, Fundamentals of the Ultrasonic Nondestructive Method for Stress Analysis of Solids [in Russian], Naukova Dumka, Kyiv (1974).
L. M. Han, “Wave propagation along layers in initially strained laminated compressible materials,” Int. Appl. Mech., 13, No. 9, 868–873 (1977).
S. M. Rytov, “Acoustic properties of fine-stratified medium,” Akust. Zh., 2, No. 1 (68), 71–83 (1956).
S. D. Akbarov and M. Ozisik, “The influence of the third order elastic constants to the generalized Rayleigh wave dispersion in a pre-stressed stratified half-plane,” Int. Jour. Eng. Sci., 41, 2047–2061 (2003).
M. Arroyo and T. Belytschko, “Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes,” Int. Jour. Numer. Meth. Eng., 59, 419–456 (2004).
G. S. Attard, P. N. Barlett, N. R. B. Coleman, J. M. Elliott, J. R. Owen, and J. H. Wang, “Mesoporous platinum films from lyotropic liquid crystalline phases,” Science, 278, 838–840 (1997).
E. Behrens, “Sound propagation in lamellar composite materials and averaged elastic constants,” JASA, 42, No. 2, 378–383 (1967).
L. Brillouin and M. Parodi, Wave Propagation in Periodic Structures, Dover, New York (1953).
A. S. Edelstein and R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications, Institute of Physics Publ., Bristol (1996).
H. L. Frisch, J. M. West, C. G. Goiter, and G. S. Attard, “Pseudo IPNs and IPNs of porous silicas and polystyrene,” J. Plym. Sci., A Polym. Chem., 34, 1823–1826 (1996).
S. Govindjee and J. L. Sackman, “On the use of continuum mechanics to estimate the properties of nanotubes,” Solid State Communications, 110, 227–230 (1999).
A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies, Springer-Verlag, Berlin (1999).
A. N. Guz, “On foundation of non-destructive method of determination of three-axial stress in solids,” Int. Appl. Mech., 37, No. 7, 899–905 (2001).
A. N. Guz, “Three-dimensional theory of stability of a carbon nanotube in a matrix,” Int. Appl. Mech., 42, No. 1, 19–31 (2006).
A. N. Guz and I. A. Guz, “On models in the theory of multiwalled carbon nanofiber in matrix,” Int. Appl. Mech., 42, No. 6, 617–628 (2006).
A. N. Guz, A. A. Rodger, and I. A. Guz, “Developing a compressive failure theory for nanocomposites,” Int. Appl. Mech., 41, No. 3, 233–255 (2005).
O. Lefevre, O. V. Kolosov, A. G. Every, G. A. D. Briggs, and Y. Tsukahara, “Elastic measurements of layered nanocomposite materials by Brillouin spectroscopy,” Ultrasonics, 38, 459–465 (2000).
C. Li and T.-W. Chen, “A structural mechanics approach for the analysis of carbon nanotubes,” Int. J. Solids Struct., 40, 2487–2499 (2003).
Y. J. Liu and X. L. Chen, “Evaluation of the effective material properties of carbon nanotube-based components using a nanoscale representative volume element,” Mech. Mater., 35, 69–81 (2003).
G. M. Odegard, T. S. Gales, L. M. Nickolson, and K. P. Wise, “Equivalent-continuum modelling of nano-structured materials,” Composite Sci. & Tech., 62, 1869–1880 (2002).
B. Bhushan (ed.), Springer Handbook on Nanotechnology, Springer-Verlag, Berlin-Heidelberg (2004).