Features of light absorption by an ensemble of microcapsules
Tóm tắt
Features of laser radiation scattering and absorption by an ensemble of two identical microcapsules are theoretically studied. Each capsule is modeled by a two-layer spherical micron-size particle consisting of water core and light absorbing polymer shell. By the numerical electrodynamics techniques, it is shown that the internal structure and mutual arrangement of particles affect the spatial distribution and amplitude characteristics of the power absorbed. The highest values of the absorbed power density in model microcapsules could be attained if the particles are shifted relative to each other by a distance of about their diameter (strongly absorbing particles) or if the particles are in the geometric shadow of each other (weak absorption).
Tài liệu tham khảo
R. K. Iler, “Multilayers of colloidal particles,” J. Colloid Interface Sci. 21 (6), 569–594 (1966).
G. Decher and J. D. Hong, “Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces,” Macromol. Chem. Sym 46, 321–327 (1991).
G. B. Sukhorukov, E. Donath, S. Davis, H. Lichtenfeld, F. Caruso, V. I. Popov, and H. Mohwald, “Stepwise polyalectrolyte assembly on particles surface: A novel approach to colloid design,” Polym. Adv. Technol. 9 (10–11), 759–767 (1998).
E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Mohwald, “Novel hollow polymer shells by colloid- templated assemble of polyelectrolytes,” Angew. Chem., Int. Ed. Engl. 37, 2201–2205 (1998).
A. S. Timin, H. Gao, D. V. Voronin, D. A. Gorin, and G. B. Sukhorukov, “Inorganic/organic multilayer capsule composition for improved functionality and external triggering,” Adv. Mater. Interfaces, 1600338 (2016). doi 10.1002/admi.201600338
K. Miyazawa, I. Yajima, I. Kaneda, and T. Yanaki, “Preparation of a new soft capsule for cosmetic,” J. Cosmet. Sci. 51, 239–252 (2000).
R. Langer and D. A. Tirrell, “Designing materials for biology and medicine,” Nature (Gr. Brit.) 428, 487–492 (2004).
E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, A. S. Kuchyanov, R. G. Parkhomenko, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as novel versatile biomedical tool.” arXiv:1501.00342 (2015).
M. Rosenberg and S.-J. Lee, “Water-insoluble, whey protein-based microspheres prepared by an all-aqueous process,” J. Food Sci. 69, FEP50 (2004).
A. G. Skirtach, A. M. Javier, O. Kreft, K. Köhler, A. P. Alberola, H. Möhwald, W. J. Parak, and G. B. Sukhorukov, “Laser-induced release of encapsulated materials inside living cells,” Angew. Chem., Int. Ed. Engl. 45 (28), 4612–4617 (2006).
A. S. Angelatos, B. Radt, and F. Caruso, “Lightresponsive polyelectrolyte/gold nanoparticle microcapsules,” J. Phys. Chem., B 109 (7), 3071–3076 (2005).
A. G. Skirtach, A. A. Antipov, D. G. Shchukin, and G. B. Sukhorukov, “Remote activation of capsules containing ag nanoparticles and IR dye by laser light,” Langmuir 20 (17), 6988–6992 (2004).
H. Gao, D. Wen, N. V. Tarakina, J. Liang, A. J. Bushbya, and G. B. Sukhorukov, “Bifunctional ultraviolet/ ultrasound responsive composite TiO2/polyelectrolyte microcapsules,” Nanoscale 8, 5170–5180 (2016).
M. Terakawa, T. Mitsuhashi, T. Shinohara, and H. Shimizu, “Near-infrared femtosecond laser-triggered nanoperforation of hollow microcapsules,” Opt. Express 21 (10), 12604–12610 (2013).
K. Hashimoto, H. Irie, and A. Fujishima, “TiO2 photocatalysis: A historical overview and future prospects,” Jpn. J. Appl. Phys. 44 (12), 8269–8285 (2005).
Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Simulation of spatial distribution of absorbed laser energy in spherical microcapsules,” Quantum Electron. 46 (9), 815–820 (2016).
A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Arthech House Pub, Boston, 2000).
M. Born and E. Wolf, Prinsiples of Optics (Pergamon Press, 1970), 4th ed.
Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “The influence of spherical microcapsules on the spatial distribution of absorbed laser radiation power,” Atmos. Ocean. Opt. 29 (5), 477–481 (2016).
Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12 (7), 1214–1220 (2004).