Features of combustion in the Mo-Si-B system: Part 2. Effect of mechanical activation

Allerton Press - Tập 56 - Trang 307-312 - 2015
E. I. Patsera1, V. V. Kurbatkina2,1, E. A. Levashov2,1, N. A. Kochetov3
1Scientific and Educational Center SHS MISiS-ISMAN, Moscow, Russia
2National University of Science and Technology “MISiS”, Moscow, Russia
3Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, Chernogolovka, Moscow oblast, Russia

Tóm tắt

This study is devoted to investigating the effect of mechanical activation (MA) on the kinetics and combustion mechanism of a reaction mixture in the Mo-Si-B ternary system, as well as ceramic material production by the self-propagating high-temperature synthesis (SHS) method. Elemental molybdenum, silicon, and boron powders are used as the initial components. The MA was carried out in a planetary mill. The MA modes with maximum heat release amount and rate were determined. MA results in an increase in the heat release rate and reactivity of the mixture because of the reagent size reduction, reduction of coherent-scattering regions, and increase in the density of structural defects and dislocations. In contrast with nonactivated mixtures, initial temperature dependences of the combustion temperature and rate are linear for MA mixtures. The MA contribution to the effective activation energy (E eff) of the combustion process is evaluated quantitatively.

Tài liệu tham khảo

Levashov, E.A., Pogozhev, Yu.S., Potanin, A.Yu., et al., Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokryt., 2013, no. 4, p. 19. Gras, Ch., Vrel, D., Gaffet, E., and Bernard, F., J. Alloys Compd., 2001, vol. 314, p. 240. Bernard, F., Souha, H., Gaffet, E., et al., Int. J. SHS, 2000, vol. 9, no. 1, p. 1. Gaffet, E., Bernard, F., Niepce, J-C., et al., J. Mater. Chem., 1999, vol. 9, p. 305. Cabouro, G., Chevalier, S., Gaffet, E., et al., J. Alloys Compd., 2008, vol. 465, p. 344. Filimonov, V.Yu., Combust. Flame, 2013, vol. 160, p. 539. Eremina, E.N., Kurbatkina, V.V., Levashov, E.A., et al., Khimiya Interes. Ustoich. Razvit., 2005, vol. 13, no. 2, p. 197. Kurbatkina, V.V. and Levashov, E.A., in Combustion of Heterogeneous Systems: Fundamentals and Applications for Materials Synthesis, Mukasyan, A.S. and Martirosyan, K.S., Eds., Kerala, India: Trans-World Res. Network, 2007, p. 131. Xue, H., Vandersall, K., Carrillo-Heian, E., et al., J. Am. Ceram. Soc., 1999, vol. 82, p. 1441. Kurbatkina, V.V., Egorychev, K.N., and Nesterova, E.Yu., Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 1996, no. 1, p. 71. Merzhanov, A.G. and Mukas’yan, A.S., Tverdoplamennoe gorenie (Solid-Flame Combustion), Moscow: TORUS PRESS, 2007. Gras, C., Gaffet, E., and Bernard, F., Intermetallics, 2006, vol. 14, p. 521. Rogachev, A.S. and Mukas’yan, A.S., Gorenie dlya sinteza materialov: Vvedenie v strukturnuyu makrokinetiku (Combustion for the Synthesis of Materials: Introductory Structural Macrokinetics), Moscow: Fizmatlit, 2012. Babkin, S.B., Bloshenko, V.I., and Borovinskaya, I.P., Fiz. Goren. Vzryva, 1991, no. 3, p. 74. Manukyan, Kh.V., Egishyan, A.V., Arutyunyan, A.B., and Kharatyan, S.L., Abstract of Papers, V Mezhdunarodnogo foruma po teploi massoobmenu (V Int. Forum on Heat and Mass Transfer), Minsk: A.V. Luikov Inst. Heat Mass Transfer, Nat. Acad. Sci. Belarus, 2004, p. 315.