Features of Interaction of Molecular Oxygen with Condensation Surface in Low-Pressure Arc Discharge Plasma

Inorganic Materials: Applied Research - Tập 13 - Trang 945-951 - 2022
I. V. Karpov1,2, A. V. Ushakov1,2, L. Yu. Fedorov1,2, E. A. Goncharova1, M. V. Brungardt1, V. G. Demin1
1Siberian Federal University, Krasnoyarsk, Russia
2Federal Research Center Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russia

Tóm tắt

A model for the investigation of features of thermal exposure of molecular oxygen in the near-surface condensation layer in a low-pressure arc discharge plasma was developed. It was determined that the electron temperature and density of positive ions ( $${\text{O}}_{2}^{ + }$$ and O+) are mainly influenced by the input power and pressure of the gas mixture. It was shown that the density of ions increases with an increase in the power of the system under constant pressure, and vice versa.

Tài liệu tham khảo

Chamorro-Coral, W., Caillard, A., Brault, P., Andreazza, P., Coutanceau, C., and Baranton, S., The role of oxygen on the growth of palladium clusters synthesized by gas aggregation source, Plasma Processes Polym., 2019, vol. 16, art. ID e1900006. Rozovskii, A.Ya., Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: K-himiya, 1974. Rai, A., Park, K., Zhou, L., and Zachariah, M.R., Understanding the mechanism of aluminium nanoparticle oxidation, Combust. Theory Modell., 2006, vol. 10, no. 5, pp. 843–859. Pavelka, M. and Grmela, M., Braun–Le Chatelier principle in dissipative thermodynamics, Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis., Mat. Nat., 2019, vol. 97, no. S1, art. ID A22. Gromov, D. and Toikka, A., Toward formal analysis of thermodynamic stability: Le Chatelier–Brown principle, Entropy, 2020, vol. 22, no. 10, art. ID 1113. Murakami, T., Niemi, K., Gans, T., O’Connell, D., and Graham, W.G., Chemical kinetics and reactive species in atmospheric pressure helium–oxygen plasmas with humid-air impurities, Plasma Sources Sci. Technol., 2013, vol. 22, art. ID 015003. Ushakov, A.V., Karpov, I.V., Fedorov, L.Yu., Dorozhkina, E.A., Karpova, O.N., Shaikhadinov, A.A., Demin, V.G., Demchenko, A.I., Brungardt, M.V., and Goncharova, E.A., Formation of CuO and Cu2O crystalline phases in a reactor for low-pressure arc discharge synthesis, Inorg. Mater.: Appl. Res., 2020, vol. 11, pp. 232–237. https://doi.org/10.1134/S2075113320010372 Ushakov, A.V., Karpov, I.V., Shaikhadinov, A.A., Fedorov, L.Yu., Goncharova, E.A., and Brungardt, M.V., Plasma oscillations at cathode spot region of vacuum arc, Inorg. Mater.: Appl. Res., 2021, vol. 12, pp. 204–207. https://doi.org/10.1134/S207511332101041X Gudmundsson, J.T., Kouznetsov, I.G., Patel, K.K., and Lieberman, M.A., Electronegativity of low-pressure high-density oxygen discharges, J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 1100–1109. https://doi.org/10.1088/0022-3727/34/7/312 Kim, S., Lieberman, M.A., and Lichtenberg, A.J., Improved volume-averaged model for steady and pulsed-power electronegative discharges, J. Vac. Sci. Technol., A, 2006, vol. 24, pp. 2025–2040. https://doi.org/10.1116/1.2345645 Gudmundsson, J.T., Marakhtanov, A.M., Patel, K.K., Gopinath, V.P., and Lieberman, M.A., On the plasma parameters of a planar inductive oxygen discharge, J. Phys. D: Appl. Phys., 2000, vol. 33, pp. 1323–1331. https://doi.org/10.1088/0022-3727/33/11/311 Lee, C. and Lieberman, M.A., Global model of Ar, O2, Cl2, and Ar/O2 high-density plasma discharges, J. Vac. Sci. Technol., A, 1995, vol. 13, pp. 368–380. https://doi.org/10.1116/1.579366