Feature screening for ultrahigh dimensional categorical data with covariates missing at random
Tài liệu tham khảo
Cheng, 2018, Feature screening in ultrahigh dimensinal categorical data based on conditional information entropy, Stat. Decis., 500, 64
Cui, 2015, Model-free feature screening for ultrahigh dimensional discriminant analysis, J. Amer. Statist. Assoc., 110, 630, 10.1080/01621459.2014.920256
Fan, 2001, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Amer. Statist. Assoc., 96, 1348, 10.1198/016214501753382273
Fan, 2008, Sure independence screening for ultrahigh dimensional feature space (with discussion), J.R. Stat. Soc. Ser. B, 70, 849, 10.1111/j.1467-9868.2008.00674.x
Fan, 2014, Nonparametric independence screening in sparse ultrahigh dimensional varying coefficient models, J. Amer. Statist. Assoc., 109, 1270, 10.1080/01621459.2013.879828
Fan, 2010, Sure independence screening in generalized linear models with NP-dimensionality, Ann. Statist., 38, 3567, 10.1214/10-AOS798
Fang, 2016, Model selection with nonignorable nonresponse, Biometrika, 103, 861, 10.1093/biomet/asw039
Garcia, 2010, Variable selection for regression models with missing data, Statist. Sinica, 20, 149
Huang, 2014, Feature screening for ultrahigh dimensional categorical data with applications, J. Bus. Econ. Stat., 32, 237, 10.1080/07350015.2013.863158
Ibrahim, 2008, Model selection criteria for missing-data problems using the EM algorithm, J. Amer. Statist. Assoc., 103, 1648, 10.1198/016214508000001057
Kim, 2013
Lai, 2017, Model free feature screening for ultrahigh dimensional data with responses missing at random, Comput. Statist. Data Anal., 105, 201, 10.1016/j.csda.2016.08.008
Li, 2012, Feature screening via distance correlation learning, J. Amer. Statist. Assoc., 107, 1129, 10.1080/01621459.2012.695654
Little, 2002
Mai, 2013, The Kolmogorov filter for variable screening in high-dimensional binary classification, Biometrika, 100, 229, 10.1093/biomet/ass062
Mai, 2015, The fused Kolmogorov filter: A nonparametric model-free screening method, Ann. Statist., 43, 1471, 10.1214/14-AOS1303
Ni, 2016, Entropy-based model-free feature screening for ultrahigh-dimensional multiclass classification, J. Nonparametr. Stat., 28, 515, 10.1080/10485252.2016.1167206
Ni, 2017, Adjusted Pearson Chi-Square feature screening for multi-classification with ultrahigh dimensional data, Metrika, 80, 805, 10.1007/s00184-017-0629-9
Pan, 2016, Ultrahigh-dimensional multiclass linear discriminant analysis by pairwise sure independence screening, J. Amer. Statist. Assoc., 111, 169, 10.1080/01621459.2014.998760
Quinlan, 1992
Tibshirani, 1996, Regression shrinkage and selection via the LASSO, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267
Van der Vaart, 1996
Wang, 2009, Forward regression for ultrahigh dimensional variable screening, J. Amer. Statist. Assoc., 104, 1512, 10.1198/jasa.2008.tm08516
Wang, 2018, How to make model free feature screening approaches for full data applicable to the case of missing response?, Scand. J. Stat., 45, 324, 10.1111/sjos.12290
Zhao, 2018, Penalized pairwise pseudo likelihood for variable selection with nonignorable missing data, Statist. Sinica, 28, 2125
Zhu, 2011, Model-free feature screening for ultrahigh-dimensional data, J. Amer. Statist. Assoc., 106, 1464, 10.1198/jasa.2011.tm10563