Feature Selection Based on Structured Sparsity: A Comprehensive Study

IEEE Transactions on Neural Networks and Learning Systems - Tập 28 Số 7 - Trang 1490-1507 - 2017
Jie Gui1, Zhenan Sun2, Yunhong Wang3, Dacheng Tao4, Tieniu Tan2
1Chinese Academy of Sciences, Institute of Intelligent Machines, Hefei, China
2National Laboratory of Pattern Recognition, Center for Research on Intelligent Perception and Computing, Institute of Automation, Chinese Academy of Sciences, Beijing, China
3School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA
4Centre for Quantum Computation & Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.1007/978-1-4757-3359-4_2

liu, 2002, Feature selection with selective sampling, Proc Int Conf Mach Learn, 395

10.1002/cpa.20132

10.1109/TNNLS.2014.2341627

10.1561/2200000015

10.1109/JPROC.2010.2044470

liu, 2012, A multi-stage framework for Dantzig selector and Lasso, J Mach Learn Res, 13, 1189

wang, 2015, A soft version of predicate invention based on structured sparsity, Proc 24th Int Joint Conf Artif Intell, 3918

tibshirani, 1996, Regression shrinkage and selection via the Lasso, J Roy Statist Soc Series B (Methodol ), 58, 267, 10.1111/j.2517-6161.1996.tb02080.x

10.1109/ACCESS.2015.2430359

rish, 2014, Practical Applications of Sparse Modeling

rish, 2014, Sparse modeling theory algorithms and applications, 10.1201/b17758

10.1214/12-STS394

10.1016/j.patcog.2012.02.005

hegde, 2015, A nearly-linear time framework for graph-structured sparsity, Proceedings of the 32nd Intl Conf on Machine Learning, 928

10.1016/j.artint.2015.02.008

10.1109/ICCV.2011.6126321

liu, 2014, Forward-backward greedy algorithms for general convex smooth functions over a cardinality constraint, Proc 31st Int Conf Mach Learn, 503

10.1007/s11263-008-0180-2

10.1007/s11081-008-9057-z

10.1145/2063576.2063746

nie, 2010, Efficient and robust feature selection via joint $l_{2,1}$ -norms minimization, Proc Adv Neural Inf Process Syst, 1813

10.1109/TPAMI.2007.250598

10.1109/TIP.2008.2007610

grave, 2011, Trace Lasso: A trace norm regularization for correlated designs, Proc Adv Neural Inf Process Syst, 2187

10.1145/2408736.2408739

nutt, 2003, Gene expression-based classification of malignant gliomas correlates better with survival than histological classification, Cancer Res, 63, 1602

nene, 1996, Columbia object image library (COIL-20)

10.1038/ng765

10.1073/pnas.191502998

sun, 2010, Local-learning-based feature selection for high-dimensional data analysis, IEEE Trans Pattern Anal Mach Intell, 32, 1610, 10.1109/TPAMI.2009.190

10.1109/TPAMI.2012.266

wolf, 2005, Feature selection for unsupervised and supervised inference: The emergence of sparsity in a weight-based approach, J Mach Learn Res, 6, 1855

10.1109/TPAMI.2010.215

he, 2006, Laplacian score for feature selection, Proc Adv Neural Inf Process Syst, 507

xu, 2013, $L_{1}$ graph based on sparse coding for feature selection, Proc 10th Int Symp Neural Netw, 594

ng, 2004, Feature selection, $L_{1}$ vs. $L_{2}$ regularization, and rotational invariance, Proc 21st Int Conf Mach Learn, 78

liu, 2010, Moreau–Yosida regularization for grouped tree structure learning, Proc Adv Neural Inf Process Syst, 1459

kong, 2014, Exclusive feature learning on arbitrary structures via $\ell _{1,2}$ -norm, Proc Adv Neural Inf Process Syst, 1655

10.1145/2339530.2339702

kim, 2010, Tree-guided group Lasso for multi-task regression with structured sparsity, Proc 27th Int Conf Mach Learn, 543

huang, 2011, Learning with structured sparsity, J Mach Learn Res, 12, 3371

jenatton, 2011, Structured variable selection with sparsity-inducing norms, J Mach Learn Res, 12, 2777

10.1109/TSMCB.2011.2179533

10.1111/j.1467-9868.2005.00532.x

10.1007/978-3-540-76390-1_86

cochran, 2007, Sampling Techniques

xing, 2001, Feature selection for high-dimensional genomic microarray data, Proc 18th Int Conf Mach Learn, 601

10.1109/TCYB.2015.2414920

10.1145/1014052.1014099

montgomery, 2009, Engineering Statistics

10.1007/3-540-57868-4_57

10.1109/TPAMI.2005.159

cover, 2006, Elements of Information Theory

alelyani, 2013, Feature selection for clustering: A review, Data Clustering Algorithms and Applications

10.1093/bioinformatics/btm344

10.1016/j.patcog.2014.11.010

tang, 2013, Feature selection for classification: A review, Data Classification Algorithms and Applications

?ehovin, 2010, Empirical evaluation of feature selection methods in classification, Intell Data Anal, 14, 265, 10.3233/IDA-2010-0421

10.1109/TPAMI.2006.134

10.1109/TIP.2014.2332396

10.1371/journal.pone.0028210

10.1016/j.ccr.2006.03.003

martínez, 1998, The AR face database

10.1109/34.598228

10.1111/j.1467-9868.2005.00503.x

10.1214/009053607000000875

wang, 2012, Robust regularized feature selection for iris recognition via linear programming, Proc 21st Int Conf Pattern Recognit, 3358

10.2202/1544-6115.1248

10.1111/j.1467-9868.2005.00490.x

10.1198/016214506000000735

petry, 2011, Pairwise fused Lasso

10.1145/2783258.2783324

10.1109/TIP.2014.2326001

10.1093/bioinformatics/bts228

10.1093/bioinformatics/btr649

wang, 2013, Multi-view clustering and feature learning via structured sparsity, Proc 30th Int Conf Mach Learn, 352

zhang, 2014, Feature selection at the discrete limit, Proc AAAI Conf Artif Intell, 1355

10.1007/s10589-014-9648-x

bradley, 1998, Feature selection via concave minimization and support vector machines, Proc 15th Int Conf Mach Learn, 82

luo, 2010, Towards structural sparsity: An explicit $\ell _{2}/\ell _{0}$ approach, Proc IEEE 10th Int Conf Data Mining, 344

10.1109/TPAMI.2015.2456899

han, 2015, Semisupervised feature selection via spline regression for video semantic recognition, IEEE Trans Neural Netw Learn Syst, 26, 252, 10.1109/TNNLS.2014.2314123

10.1109/CVPR.2008.4587637

10.1109/TNNLS.2013.2286696

10.1109/CVPR.2008.4587367

10.1198/004017005000000139

10.1016/j.sigpro.2005.05.031

10.1145/347090.347105

10.1109/TCBB.2010.119

10.1093/bioinformatics/btm579

jia, 2010, Factorized latent spaces with structured sparsity, Proc Adv Neural Inf Process Syst, 982

tan, 2010, Learning sparse SVM for feature selection on very high dimensional datasets, Proc 27th Int Conf Mach Learn, 1047

quattoni, 2009, An efficient projection for $l_{1,\infty }$ regularization, Proc 26th Annu Int Conf Mach Learn, 857

cawley, 2007, Sparse multinomial logistic regression via Bayesian L1 regularisation, Proc Adv Neural Inf Process Syst, 209

liu, 2010, Sparse support vector machines with $L_{p}$ penalty for biomarker identification, ACM Trans Computational Biology and Bioinformatics, 7, 100, 10.1109/TCBB.2008.17

10.1093/bioinformatics/btl386

10.1093/bioinformatics/btg308

10.1162/089976603321780317

10.1109/IGARSS.2011.6049463

10.1371/journal.pgen.1000587

10.1214/09-AOAS302

10.1080/01621459.2013.770704

10.1145/2339530.2339675

cai, 2011, Multi-class $\ell _{2,1}$ -norm support vector machine, Proc IEEE Int Conf Data Mining, 91

wu, 2013, Online feature selection with streaming features, IEEE Trans Pattern Anal Mach Intell, 35, 1178, 10.1109/TPAMI.2012.197

li, 2012, Unsupervised feature selection using nonnegative spectral analysis, Proc AAAI Conf Artif Intell, 1026

perkins, 2003, Online feature selection using grafting, Proc 20th Int Conf Mach Learn, 592

yang, 2011, Nonnegative spectral clustering with discriminative regularization, Proc AAAI Conf Artif Intell, 555

ding, 2006, $R_{1}$ -PCA: Rotational invariant $L_{1}$ -norm principal component analysis for robust subspace factorization, Proc 23rd Int Conf Mach Learn, 281

10.1109/34.868688

argyriou, 2007, Multi-task feature learning, Proc Adv Neural Inf Process Syst, 41

10.1109/ICCV.2003.1238361

10.1109/TKDE.2005.66

obozinski, 2006, Multi-task feature selection

10.1198/jasa.2010.tm09415

guyon, 2003, An introduction to variable and feature selection, J Mach Learn Res, 3, 1157

lee, 2010, Adaptive multi-task Lasso: With application to eQTL detection, Proc Adv Neural Inf Process Syst, 1306

10.1109/TNN.2005.860852

wang, 2011, Sparse multi-task regression and feature selection to identify brain imaging predictors for memory performance, Proc IEEE Int Conf Comput Vis, 557

10.1137/1.9781611972832.89

liu, 2009, Multi-task feature learning via efficient $l_{2,1}$ -norm minimization, Proc 25th Conf Uncertainty Artif Intell, 339

zhao, 2010, Efficient spectral feature selection with minimum redundancy, Proc 24th AAAI Conf Artif Intell, 673

han, 2015, Unsupervised simultaneous orthogonal basis clustering feature selection, Proc IEEE Conf Comput Vis Pattern Recognit, 5016

10.1145/1835804.1835848

hernández-lobato, 2015, A probabilistic model for dirty multi-task feature selection, Proceedings of the 32nd Intl Conf on Machine Learning, 1073

roweis, 2000, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323, 10.1126/science.290.5500.2323

cai, 2013, Exact top-k feature selection via $\ell _{2,0}$ -norm constraint, Proc Int Joint Conf Artif Intell, 1240

10.1109/TCYB.2013.2272642

masaeli, 2010, From transformation-based dimensionality reduction to feature selection, Proc 27th Int Conf Mach Learn, 751

chung, 1997, Spectral Graph Theory, 92

10.1007/978-3-642-23780-5_45

10.1007/s11222-008-9111-x

10.1145/2339530.2339673

yang, 2011, $l_{2,1}$ -norm regularized discriminative feature selection for unsupervised learning, Proc 22nd Int Joint Conf Artif Intell, 1589

gu, 2011, Joint feature selection and subspace learning, Proc Int Joint Conf Artif Intell, 1294

liu, 2007, Comments on ‘efficient and robust feature extraction by maximum margin criterion, IEEE Trans Neural Netw, 18, 1862, 10.1109/TNN.2007.900813

10.1007/s00521-012-0827-3

10.1109/TPAMI.2007.1096

10.1109/TNNLS.2015.2461554

duda, 2001, Pattern Classification

gu, 2011, Generalized Fisher score for feature selection, Proc Conf Uncertainty of Artificial Intelligence, 266

10.1016/j.sigpro.2012.09.011

10.1007/978-1-4419-7011-4

10.1145/1754428.1754431

kim, 2013, Gradient Lasso for feature selection, Proc 21st Int Conf Mach Learn, 60

10.1109/TKDE.2011.222

10.1007/978-3-642-36669-7_78

10.1016/j.patcog.2014.09.010

zhou, 2010, Exclusive Lasso for multi-task feature selection, Proc 13th Int Conf Artif Intell Statist, 988

10.1016/j.patcog.2014.10.021

10.1016/j.patcog.2014.08.006

10.1109/TMM.2012.2187179

zhu, 2014, Matrix-similarity based loss function and feature selection for Alzheimer’s disease diagnosis, Proc IEEE Conf Comput Vis Pattern Recognit, 3089

liu, 2013, Global and local structure preservation for feature selection, IEEE Trans Neural Netw Learn Syst, 25, 1083, 10.1109/TNNLS.2013.2287275

jebara, 2011, Multitask sparsity via maximum entropy discrimination, J Mach Learn Res, 12, 75

liang, 2011, Exploring regularized feature selection for person specific face verification, Proc IEEE Int Conf Comput Vis, 1676

guo, 2013, Probabilistic multi-label classification with sparse feature learning, Proc Int Joint Conf Artif Intell, 1373

zhang, 2010, A convex formulation for learning task relationships in multi-task learning, Proc Conf Uncertainty Artif Intell, 733

chang, 2014, A convex formulation for semi-supervised multi-label feature selection, Proc 28th AAAI Conf Artif Intell, 1171

10.1109/TPAMI.2015.2417578

hou, 2011, Feature selection via joint embedding learning and sparse regression, Proc 22nd Int Joint Conf Artif Intell, 1324

10.1109/BTAS.2013.6712752

10.1109/ACPR.2013.34

10.1109/CVPR.2013.398

10.1109/TSP.2007.896065

he, 2012, $l_{2,1}$ regularized correntropy for robust feature selection, Proc IEEE Conf Comput Vis Pattern Recognit, 2504

10.1137/030600862

10.1109/TNNLS.2012.2212721