Feasible path planning for fixed-wing UAVs using seventh order Bézier curves
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alves Neto A, Campos MFM (2009) A path planning algorithm for UAVs with limited climb angle. In: The 2009 IEEE/RSJ international xonference on intelligent robots and systems (IROS’09), St. Louis, USA
Alves Neto A, Campos MFM (2009) On the generation of feasible paths for aerial robots with limited climb angle. In: Proceedings of the IEEE international conference on robotics and automation (ICRA’09). Kobe, Japan
Alves Neto A, Macharet DG, Campos MFM (2010) Feasible RRT-based path planning using seventh order bézier curves. In: The 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS’10). Taipei, Taiwan
Alves Neto A, Macharet DG, Campos MFM (2010) On the generation of trajectories for multiple UAVs in environments with obstacles. J Intell Robotic Syst 57(4):123–141
Bortoff S (2000) Path planning for UAVs. In: Proceedings of the American control conference, vol 1, Chicago, Illinois, USA, pp 364–368. doi:10.1109/ACC.2000.878915
Cheng P, Shen Z, Lavalle SM (2001) RRT-based trajectory design for autonomous automobiles and spacecraft. Arch Control Sci 11(3–4):167–194
Dogan A (2003) Probabilistic path planning for UAVs. In: Proceedings of 2nd AIAA unmanned unlimited systems, technologies, and operations—aerospace, land, and sea conference and workshop exhibition. San Diego, CA, USA
Farouki RT (1996) The elastic bending energy of Pythagorean hodograph curves. Comput Aided Geom Des 13:227–241
Farouki RT, Han CY (2006) Algorithms for spatial Pythagorean-hodograph curves. In: Klette R, Kozera R, Noakes L, Weickert J (eds) Geometric properties for incomplete data, Springer pp 43–58
Farouki RT, al Kandari M, Sakkalis T (2002) Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves. Adv Comput Math 17:369–383
Farouki RT, Neff CA (1995) Hermite interpolation by Pythagorean hodograph quintics. Math Comput 64:1589–1609
Gonçalves VM, Pimenta LCA, Maia CA, Dutra BCO, Pereira GAS (2010) Vector fields for robot navigation along time-varying curves in n-dimensions. Trans Robotics 26:647–659. doi:10.1109/TRO.2010.2053077
Griffiths S, Saunders J, Curtis A, Barber B, McLain T, Beard R (2006) Maximizing miniature aerial vehicles. IEEE Robotics Autom Mag 13(3):34–43. doi:10.1109/MRA.2006.1678137
Iscold P, Pereira G, Torres L (2010) Development of a hand-launched small UAV for ground reconnaissance. IEEE Trans Aerospace Electron Syst 6(1):335–348. doi:10.1109/TAES.2010.5417166
Kreyszig E (1991) Differential Geometry, vol 1. Dover Publications, New York
Kuwata Y, Richards A, Schouwenaars T, How JP (2005) Robust constrained receding horizon control for trajectory planning. In: Proceedings of the AIAA guidance, navigation and control conference
Nelson DR, Blake D, Timothy B, Mclain W, Beard RW (2006) Vector field path following for small unmanned air vehicles. IEEE Trans Control Syst Technol 48: 5788–5794
Sederberg TW (2007) Computer aided geometric design, chap. 2. Brigham Young University, Provo, Utah
Shanmugavel M, Tsourdos A, Zbikowski R, White BA (2007) 3D path planning for multiple UAVs using Pythagorean hodograph curves. In: Proceedings of the AIAA guidance, navigation and control conference and exhibit (AIAA-GNC). Hilton Head, South Carolina
Shanmugavel M, Tsourdos A, Zbikowski R, White BA, Rabbath CA, Lechevin N (2006) A solution to simultaneous arrival of multiple UAVs using Pythagorean hodograph curves. In: Proceedings of the IEEE American control conference (ACC), pp 2813–2818, Minneapolis, Minnesota, USA