Feasibility study of super-resolution deep learning-based reconstruction using k-space data in brain diffusion-weighted images

Neuroradiology - Tập 65 - Trang 1619-1629 - 2023
Kensei Matsuo1, Takeshi Nakaura2, Kosuke Morita1, Hiroyuki Uetani2, Yasunori Nagayama2, Masafumi Kidoh2, Masamichi Hokamura2, Yuichi Yamashita3, Kensuke Shinoda4, Mitsuharu Ueda5, Akitake Mukasa6, Toshinori Hirai2
1Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
2Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
3Canon Medical Systems Corporation, Kawasaki, Japan
4MRI Systems Division, Canon Medical Systems Corporation, Otawara, Japan
5Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
6Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan

Tóm tắt

The purpose of this study is to evaluate the influence of super-resolution deep learning-based reconstruction (SR-DLR), which utilizes k-space data, on the quality of images and the quantitation of the apparent diffusion coefficient (ADC) for diffusion-weighted images (DWI) in brain magnetic resonance imaging (MRI). A retrospective analysis was performed on 34 patients who had undergone DWI using a 3 T MRI system with SR-DLR reconstruction based on k-space data in August 2022. DWI was reconstructed with SR-DLR (Matrix = 684 × 684) and without SR-DLR (Matrix = 228 × 228). Measurements were made of the signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) in white matter (WM) and grey matter (GM), and the full width at half maximum (FWHM) of the septum pellucidum. Two radiologists assessed image noise, contrast, artifacts, blur, and the overall quality of three image types using a four-point scale. Quantitative and qualitative scores between images with and without SR-DLR were compared using the Wilcoxon signed-rank test. Images with SR-DLR showed significantly higher SNRs and CNRs than those without SR-DLR (p < 0.001). No statistically significant variances were found in the apparent diffusion coefficients (ADCs) in WM and GM between images with and without SR-DLR (ADC in WM, p = 0.945; ADC in GM, p = 0.235). Moreover, the FWHM without SR-DLR was notably lower compared to that with SR-DLR (p < 0.001). SR-DLR has the potential to augment the quality of DWI in DL MRI scans without significantly impacting ADC quantitation.

Tài liệu tham khảo

Kono K, Inoue Y, Nakayama K, Shakudo M, Morino M, Ohata K et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22(6):1081–1088 Okorie CK, Ogbole GI, Owolabi MO, Ogun O, Adeyinka A, Ogunniyi A (2015) Role of diffusion-weighted imaging in acute stroke management using low-field magnetic resonance imaging in resource-limited settings. West Afr J Radiol 22(2):61–66 Butts K, Riederer SJ, Ehman RL, Thompson RM, Jack CR (1994) Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 31(1):67–72 Porter DA, Heidemann RM (2009) High resolution diffusion-weighted imaging using readout-segmented echo-planar imaging, parallel imaging and a two-dimensional navigator-based reacquisition. Magn Reson Med 62(2):468–475 Morelli J, Porter D, Ai F, Gerdes C, Saettele M, Feiweier T et al (2013) Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T. Acta Radiol 54(3):299–306 Wang Y, Ma X, Zhang Z, Dai E, Jeong HK, Xie B et al (2018) A comparison of readout segmented EPI and interleaved EPI in high-resolution diffusion weighted imaging. Magn Reson Imaging 1(47):39–47 Kidoh M, Shinoda K, Kitajima M, Isogawa K, Nambu M, Uetani H et al (2020) Deep learning based noise reduction for brain MR imaging: tests on phantoms and healthy volunteers. Magn Reson Med Sci 19(3):195–206 Uetani H, Nakaura T, Nakaura T, Kitajima M, Morita K, Haraoka Kentaro et al (2022) Hybrid deep-learning-based denoising method for compressed sensing in pituitary MRI: comparison with the conventional wavelet-based denoising method. Eur Radiol 32(7):4527–453 Uetani H, Nakaura T, Kitajima M, Yuichi Y, Hamasaki T, Tateishi M et al (2021) A preliminary study of deep learning-based reconstruction specialized for denoising in high-frequency domain: usefulness in high-resolution three-dimensional magnetic resonance cisternography of the cerebellopontine angle. Neuroradiology 63(1):63–71 Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K (2019) Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol 37(1):73–80 Yasaka K, Akai H, Sugawara H, Tajima T, Akahane M, Yoshioka N et al (2022) Impact of deep learning reconstruction on intracranial 1.5 T magnetic resonance angiography. Jpn J Radiol 40(5):476–83 Chaudhari AS, Fang Z, Kogan F, Wood JP, Stevens KJ, Gibbons EK et al (2018) Super-resolution musculoskeletal MRI using deep learning. Magn Reson Med 80(5):2139–2154 Chaudhari AS, Stevens KJ, Wood JP, Chakraborty Amit K, Chakraborty A, Chakraborty Amit et al (2020) Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers. J Magn Reson Imaging. 51(3):768–79 Pham CH, Tor-Díez C, Meunier H, Bednarek N, Fablet R et al (2019) Multiscale brain MRI super-resolution using deep 3D convolutional networks. Comput Med Imaging Graph 77:101647 Du YP, Parker DL, Davis WL, Cao G (1994) Reduction of partial-volume artifacts with zero-filled interpolation in three-dimensional MR angiography. J Magn Reson Imaging 4(5):733–741 Bernstein MA, Fain SB, Riederer SJ (2001) Effect of windowing and zero-filled reconstruction of MRI data on spatial resolution and acquisition strategy. J Magn Reson Imaging 14(3):270–280 Kutsuna H, Uematsu S, Shinoda K (2023) High resolution MR reconstruction with functionally separate neural networks. ISMRM. No. 2922 Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254 Yoshida M, Nakaura T, Inoue T, Tanoue S, Takada S, Utsunomiya D et al (2018) Magnetic resonance cholangiopancreatography with GRASE sequence at 3.0T: does it improve image quality and acquisition time as compared with 3D TSE? Eur Radiol 28(6):2436–43 Chen Z, Pawar K, Ekanayake M, Pain C, Zhong S, Egan GF (2022) Deep learning for image enhancement and correction in magnetic resonance imaging—state-of-the-art and challenges. J Digit Imaging 36(1):204–230 Zhao M, Wei Y, Wong KKL (2022) A generative adversarial network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Magn Reson Imaging 1(85):153–160 Chun J, Chun J, Zhang H, Gach HM, Olberg S, Mazur TR et al (2019) MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: in the presence of limited training data and unknown translation model. Med Phys 46(9):4148–4164 Gibbs JW (1898) Fourier’s Series. Nature 59(1522):200–200