Feasibility study of observing $$ \varvec {\gamma} $$ -ray emission from high redshift blazars using the MACE telescope

A. Tolamatti1,2, K. K. Singh1,2, K. K. Yadav1,2
1Astrophysical Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
2Homi Bhabha National Institute, Anushaktinagar, Mumbai, India

Tóm tắt

Blazars are the most powerful class of persistent $$\gamma $$ -ray sources in the extragalactic Universe. Study of high redshift blazars is important to understand their cosmological evolution and formation of the supermassive black holes in the early phases of the Universe. The distant blazars are expected to be faint in the $$\gamma $$ -ray energy band since the high-energy $$\gamma $$ -ray photons traveling over cosmological distances are absorbed by the low-energy extragalactic background light photons via $$\gamma $$ – $$\gamma $$ pair production. Therefore, detection of high-energy $$\gamma $$ -ray emission from the blazars at high redshifts using ground-based telescopes is a very challenging task. In this paper, we report the feasibility of observing high redshift blazars with the MACE gamma-ray telescope which has recently become operational at Hanle, Ladakh. We have prepared a catalog of 94 high redshift blazars from the Fourth Fermi-LAT catalog of $$\gamma $$ -ray sources for their plausible observation with the MACE telescope. We have calculated the integral flux for these sources by extrapolating their Fermi-LAT spectra in the energy range from 30 GeV to 5 TeV. Using the MACE sensitivity information, we have estimated the total time required for the MACE telescope to detect the high-energy $$\gamma $$ -ray emission from these high redshift blazars at 5 $$\sigma $$ statistical significance level.

Từ khóa


Tài liệu tham khảo

Abdalla H., et al. 2020, Mon. Not. R. Astron. Soc., 494, 5590 Abdo A. A., et al. 2011, Astrophys. J., 726, 43 Abdollahi S., et al. 2020, Astrophys. J. Suppl., 247, 33 Abeysekara A. U., et al. 2015, Astrophys. J. Lett., 815, L22 Ackermann M., et al. 2016, Astrophys. J. Lett., 824, L20 Aharonian F. A. 2002, Mon. Not. R. Astron. Soc., 332, 215 Aharonian F., et al. 2007, Astrophys. J. Lett., 664, L71 Ahnen M. L., et al. 2016, Astron. Astrophys., 595, A98 Ajello M., et al. 2020, Astrophys. J., 892, 105 Aleksić J., et al. 2011, Astrophys. J. Lett., 730, L8 Aleksić J., et al. 2015, Mon. Not. R. Astron. Soc., 446, 217 Atwood W. B., et al. 2009, Astrophys. J., 697, 1071 Ballet J., et al. 2020, arxiv: 2005.11208 Benbow W. 2011, Int. Cosmic Ray Conf., 8, 51 Benbow W. 2015, Int. Cosmic Ray Conf., 34, 821 Benbow W. 2019, Int. Cosmic Ray Conf., 36, 632 Blandford R. D., Znajek R. L. 1977, Mon. Not. R. Astron. Soc., 179, 433 Blandford R. D., et al. 2019, Ann. Rev. Astron. Astrophys., 57, 467 Borwankar C., et al. 2020, Nucl. Instrum. Methods Phys. Res. A, 953, 163182 Cerruti M. 2015, Mon. Not. R. Astron. Soc., 448, 910 Domínguez A., et al. 2011, Mon. Not. R. Astron. Soc., 410, 2556 Fabian A. C., et al. 2014, Mon. Not. R. Astron. Soc., 442, L81 Fazio G. G., Stecker F. W. 1970, Nature, 226, 135 Finke J. D., et al. 2010, Astrophys. J., 712, 238 Ghisellini G., et al. 1985, Astron. Astrophys., 146, 204 Ghisellini G., et al. 2017, Mon. Not. R. Astron. Soc., 469, 255 Gould R. J., Schreder G. P. 1966, Phys. Rev., 16, 252 Gould R. J., Schreder G. P. 1967, Phys. Rev., 155, 1408 IceCube Collaboration et al. 2018, Science, 361, 1378 Koul R. 2017, Curr. Sci., 113, 691 MAGIC Collaboration et al. 2008, Science, 320, 1752 MAGIC Collaboration, et al. 2021, Astron. Astrophys., 647, 163 Mannheim K. 1993, Astron. Astrophys., 269, 67 Sbarrato T., et al. 2015, Mon. Not. R. Astron. Soc., 446, 2483 Sharma M., et al. 2017, Nucl. Instrum. Methods Phys. Res. A, 851, 125 Sikora M., et al. 1994, Astrophys. J., 421, 153 Sikora M., et al. 2009, Astrophys. J., 704, 38 Singh K. K., et al. 2014, New Astron., 27, 34 Singh K. K., et al. 2019a, Astrophys. Space Sci., 364, 88 Singh K. K., et al. 2019b, Mon. Not. R. Astron. Soc., 489, 5076 Singh K. K., et al. 2019c, Exp. Astron., 48, 297 Singh K. K., Meintjes P. J. 2020a, Astron. Nachr., 41, 713 Singh K. K., Meintjes P. J. 2020b, NRIAG J. Astron. Geophys., 9, 309 Singh K. K., et al. 2020, Astrophys. Space Sci., 365, 33 Singh K. K., Yadav K. K. 2021a, Universe, 7, 96 Singh K. K., et al. 2021b, Astrophys. Space Sci., 366, 51 Stickel M., et al. 1991, Astrophys. J., 374, 431 Stocke J. T., et al. 1991, Astrophys. J. Suppl., 76, 813 Stecker F. W., et al. 2006, Astrophys. J., 648, 774 Urry C. M., Padovani P. 1995, Publ. Astron. Soc. Pacific, 107, 803 Volonteri M., Stark D. P. 2011, Mon. Not. R. Astron. Soc., 417, 2085 Yadav K. K., et al. 2021, arxiv: 2107.04297 Zhang H., et al. 2015, Astrophys. J., 804, 58 Zhang H., et al. 2019, Astrophys. J., 876, 109