Feasibility of using a handheld ultrasound device to detect and characterize shunt and deep vein thrombosis in patients with COVID-19: an observational study

The Ultrasound Journal - Tập 12 - Trang 1-9 - 2020
Naveed Mahmood1,2, Arif Hussain3, Mubashar Kharal1,2, Rajkumar Rajendram1,2
1Department of Medicine, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia
2College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
3Department of Cardiac Sciences, King Abdulaziz Medical City, King Abdulaziz International Medical Research Center, Ministry of National Guard - Health Affairs, Riyadh, Saudi Arabia

Tóm tắt

Coronavirus disease 2019 (COVID-19) causes an atypical acute respiratory distress syndrome associated with thromboembolism and high shunt fraction. Shunt may be intrapulmonary, or extrapulmonary. Handheld devices are increasingly being used for point-of-care ultrasound, but their use to characterize shunt has not been reported. Determine the feasibility of using handheld ultrasound to detect and characterize anatomical substrates of hypoxia and deep vein thrombosis (DVT) in patients with COVID-19 suspected to have severe shunt. A handheld ultrasound device (iQ, Butterfly, USA) was used to perform lung ultrasound, vascular assessment for DVT, and limited transthoracic echocardiography (TTE) with color Doppler and saline microbubble contrast in patients with COVID-19 suspected to have severe shunt. Images were reassessed by an independent reviewer. After screening 40 patients, six patients who fulfilled the inclusion criteria were identified. Two were excluded because palliation had been initiated. So, four patients were studied. Interpretable images were obtained in all cases. Interobserver agreement was good. All patients had abnormal lung ultrasound (lung ultrasound score range 17–22). Identified lung pathology included interstitial syndrome with light beams and small peripheral consolidation (4), lobar consolidation (1), and pleural effusion (1). Abnormal echocardiographic findings included interatrial shunt (2), intrapulmonary shunt (1), and dilated right ventricle with tricuspid valve regurgitation (1). Significant DVT was not detected. Use of handheld ultrasound to perform combined lung ultrasound, DVT ultrasound, and limited TTE with color Doppler and saline microbubble contrast is feasible, and may be able to characterize shunt in critically hypoxic patients. Serial studies could be used to monitor changes in shunt. Further studies are required to determine whether this can guide treatment to improve the outcomes of patients with refractory hypoxia.

Từ khóa

#Emergency Medicine #Ultrasound #Intensive / Critical Care Medicine #Diagnostic Radiology #Imaging / Radiology #Interventional Radiology

Tài liệu tham khảo

Gattinoni L, Coppola S, Cressoni M et al (2020) Covid-19 does not lead to a “Typical” acute respiratory distress syndrome. Am J Respir Crit Care Med. https://doi.org/10.1164/rccm.202003-0817LE Gattinoni L, Chiumello D, Caironi P et al (2020) COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Med. https://doi.org/10.1007/s00134-020-06033-2 Soldati G, Giannasi G, Smargiassi A et al (2020) Contrast-enhanced ultrasound in patients with COVID-19: pneumonia, acute respiratory distress syndrome, or something else? J ultrasound Med Off J Am Inst Ultrasound Med. https://doi.org/10.1002/jum.15338 Al-Ani F, Chehade S, Lazo-Langner A (2020) Thrombosis risk associated with COVID-19 infection. A scoping review. Thromb Res 192:152–160. https://doi.org/10.1016/j.thromres.2020.05.039 Rajendram R, Kharal GA, Mahmood N et al (2020) Intensive care medicine rethinking the respiratory paradigm of Covid-19: A ‘ hole ’ in the argument. Intensive Care Med 46:1496–1497. https://doi.org/10.1007/s00134-020-06102-6 Agrawal A, Palkar A, Talwar A (2017) The multiple dimensions of Platypnea-Orthodeoxia syndrome: a review. Respir Med 129:31–38. https://doi.org/10.1016/j.rmed.2017.05.016 Guarracino F, Vetrugno L, Forfori F et al (2020) Lung, heart, vascular, and diaphragm ultrasound examination of COVID-19 patients: a comprehensive approach. J Cardiothorac Vasc Anesth. https://doi.org/10.1053/j.jvca.2020.06.013 Repessé X, Charron C, Vieillard-Baron A (2016) Assessment of the effects of inspiratory load on right ventricular function. Curr Opin Crit Care 22:254–259. https://doi.org/10.1097/MCC.0000000000000303 Mekontso Dessap A, Boissier F, Charron C et al (2016) Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact. Intensive Care Med 42:862–870. https://doi.org/10.1007/s00134-015-4141-2 Rana BS, Thomas MR, Calvert PA et al (2010) Echocardiographic evaluation of patent foramen ovale prior to device closure. JACC Cardiovasc Imaging 3:749–760. https://doi.org/10.1016/j.jcmg.2010.01.007 Gallagher G, Joseph A, Rajendram R (2018) Platypnea-orthodeoxia: Patent foramen ovale unmasked by pulmonary emboli. Indian J Respir Care 7:50–52 Smith MJ, Hayward SA, Innes SM, Miller ASC (2020) Point-of-care lung ultrasound in patients with COVID-19—a narrative review. Anaesthesia. https://doi.org/10.1111/anae.15082 Haji K, Haji D, Canty DJ et al (2018) The feasibility and impact of routine combined limited transthoracic echocardiography and lung ultrasound on diagnosis and management of patients admitted to ICU: a prospective observational study. J Cardiothorac Vasc Anesth 32:354–360. https://doi.org/10.1053/j.jvca.2017.08.026 Clevert D-A, Schwarze V, Nyhsen C et al (2019) ESR statement on portable ultrasound devices. Insights Imaging 10:89. https://doi.org/10.1186/s13244-019-0775-x Glogoza M, Urbach J, Rosborough TK et al (2020) Tablet vs station-based laptop ultrasound devices increases internal medicine resident point-of-care ultrasound performance: a prospective cohort study. Ultrasound J 12:18. https://doi.org/10.1186/s13089-020-00165-8 Gibson LE, Bittner EA, Chang MG (2020) Handheld ultrasound devices: an emerging technology to reduce viral spread during the Covid-19 pandemic. Am J Infect Control. https://doi.org/10.1016/j.ajic.2020.05.041 Vavlitou A, Minas G, Zannetos S et al (2016) Hemodynamic and respiratory factors that influence the opening of patent foramen ovale in mechanically ventilated patients. Hippokratia 20:209–213 Mekontso Dessap A, Boissier F, Leon R et al (2010) Prevalence and prognosis of shunting across patent foramen ovale during acute respiratory distress syndrome. Crit Care Med 38:1786–1792. https://doi.org/10.1097/CCM.0b013e3181eaa9c8 Lee JH, Lee SH, Yun SJ (2019) Comparison of 2-point and 3-point point-of-care ultrasound techniques for deep vein thrombosis at the emergency department: a meta-analysis. Medicine (Baltimore) 98:e15791. https://doi.org/10.1097/MD.0000000000015791 Price S, Via G, Sloth E et al (2008) Echocardiography practice, training and accreditation in the intensive care: document for the World Interactive Network Focused on Critical Ultrasound (WINFOCUS). Cardiovasc Ultrasound 6:49. https://doi.org/10.1186/1476-7120-6-49 Volpicelli G, Elbarbary M, Blaivas M et al (2012) International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 38:577–591. https://doi.org/10.1007/s00134-012-2513-4 Volpicelli G, Lamorte A, Villén T (2020) What’s new in lung ultrasound during the COVID-19 pandemic. Intensive Care Med 46:1445–1448. https://doi.org/10.1007/s00134-020-06048-9 Via G, Hussain A, Wells M et al (2014) International evidence-based recommendations for focused cardiac ultrasound. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr 27:683.e1-683.e33. https://doi.org/10.1016/j.echo.2014.05.001 Lee FCY (2016) Lung ultrasound-a primary survey of the acutely dyspneic patient. J Intensive Care 4:57. https://doi.org/10.1186/s40560-016-0180-1 Mongodi S, Bouhemad B, Orlando A et al (2017) Modified lung ultrasound score for assessing and monitoring pulmonary aeration. Ultraschall Med 38:530–537. https://doi.org/10.1055/s-0042-120260 Rouby J-J, Arbelot C, Gao Y et al (2018) Training for lung ultrasound score measurement in critically Ill patients. Am J Respir Crit Care Med 198:398–401 Volpicelli G, Gargani L (2020) Sonographic signs and patterns of COVID-19 pneumonia. Ultrasound J 12:22. https://doi.org/10.1186/s13089-020-00171-w Mongodi S, Via G, Riccardi M et al (2017) Patent foramen ovale diagnosis: the importance of provocative maneuvers. J Clin Ultrasound 45:58–61 Rajendram R, Kharal GA, Mahmood N, Kharal M (2020) Identifying phenotypes of COVID-19, defining their pathogenesis, and targeting treatments could improve outcomes. Respir Physiol Neurobiol 280:103477 Collado FMS, Poulin MF, Murphy JJ et al (2018) Patent foramen ovale closure for stroke prevention and other disorders. J Am Heart Assoc 7:1–22. https://doi.org/10.1161/JAHA.117.007146 Marples IL, Heap MJ, Suvarna SK, Mills GH (2000) Acute right-to-left inter-atrial shunt; an important cause of profound hypoxia. Br J Anaesth 85:921–925. https://doi.org/10.1093/bja/85.6.921 Guimaraes L, Del Val D, Bergeron S et al (2020) Interatrial shunting for treating acute and chronic left heart failure. Eur Cardiol 15:e18. https://doi.org/10.15420/ecr.2019.04 Kurzyna M, Dabrowski M, Bielecki D et al (2007) Atrial septostomy in treatment of end-stage right heart failure in patients with pulmonary hypertension. Chest 131:977–983. https://doi.org/10.1378/chest.06-1227 Rajendram R (2020) Building the house of CARDS by phenotyping on the fly. Eur Respir J. https://doi.org/10.1183/13993003.02429-2020