Fatigue crack nucleation and microstructurally small crack growth mechanisms in high strength aluminum alloys

International Journal of Fatigue - Tập 140 - Trang 105790 - 2020
C. Cauthen1, K.V. Anderson1, D.Z. Avery1, A. Baker2, C.J. Williamson1, S.R. Daniewicz1, J.B. Jordon1
1Department of Mechanical Engineering, The University of Alabama, Tuscaloosa, Alabama 35487-0276, USA
2Boeing Research & Technology, The Boeing Company, Berkeley, MO 63134, USA

Tài liệu tham khảo

Stephens, 2001 Suresh, 1984, Propagation of short fatigue cracks, Int Met Rev, 29, 445, 10.1179/imr.1984.29.1.445 Gupta, 2008, Measuring the effect of environment on fatigue crack-wake plasticity in aluminum alloy 2024 using electron backscatter diffraction, Mater Sci Eng A, 494, 36, 10.1016/j.msea.2007.09.082 Gupta, 2011, Fatigue crack surface crystallography near crack initiating particle clusters in precipitation hardened legacy and modern Al–Zn–Mg–Cu alloys, Int J Fatigue, 33, 1159, 10.1016/j.ijfatigue.2011.01.018 Johnston, 2006, Three-dimensional finite element simulations of microstructurally small fatigue crack growth in 7075 aluminium alloy, Fatigue Fract Eng Mater Struct, 29, 597, 10.1111/j.1460-2695.2006.01035.x Alexopoulos, 2013, Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading, Int J Fatigue, 56, 95, 10.1016/j.ijfatigue.2013.07.009 Tong, 2016, Relationship Between Crack Growth Resistance KR Curve and Specimen Width for 2060 - T8E30 Lithium Aluminum Alloy, MATEC Web Conf., 67, 03005, 10.1051/matecconf/20166703005 Lin, 2013, Microstructures and properties of 2099 Al-Li alloy, Mater Charact, 84, 88, 10.1016/j.matchar.2013.07.015 Lin, 2014, Effect of solution treatment on microstructures and mechanical properties of 2099 Al–Li alloy, Arch Civ Mech Eng, 14, 61, 10.1016/j.acme.2013.07.005 Ma, 2011, Distribution of intermetallics in an AA 2099–T8 aluminium alloy extrusion, Mater Chem Phys, 126, 46, 10.1016/j.matchemphys.2010.12.014 Ma, 2016, Localised corrosion in AA 2099–T83 aluminium-lithium alloy: The role of grain orientation, Corros Sci, 107, 41, 10.1016/j.corsci.2016.02.018 Rao, 1988, Fatigue crack propagation in aluminum- lithium alloy 2090: Part I. long crack behavior, Metall Trans A, 19, 549, 10.1007/BF02649270 Rao, 1988, Fatigue crack propagation in aluminum-lithium alloy 2090: Part II. small crack behavior, Metall Mater Trans A, 19, 563, 10.1007/BF02649270 Ro, 2007, Crystallography of fatigue crack propagation in precipitation-hardened Al-Cu-Mg/Li, Metall Mater Trans A, 38, 3042, 10.1007/s11661-007-9344-x Slavik, 1996, Environment and microstructure effects on fatigue crack facet orientation in an Al-Li-Cu-Zr alloy, Acta Mater, 44, 3515, 10.1016/1359-6454(96)00013-4 Zhong, 2014, Fatigue crack initiation and early propagation behavior of 2A97 Al–Li alloy, Trans Nonferrous Met Soc China, 24, 303, 10.1016/S1003-6326(14)63061-2 Moreira, 2012, Fatigue and fracture behaviour of friction stir welded aluminium–lithium 2195, Theor Appl Fract Mech, 60, 1, 10.1016/j.tafmec.2012.06.001 Akhtar, 2017, Macromechanics study of stable fatigue crack growth in Al-Cu-Li-Mg-Ag alloy, Fatigue Fract Eng Mater Struct, 40, 233, 10.1111/ffe.12489 Tchitembo Goma, 2014, Effect of extrusion aspect ratio and test temperatures on fatigue crack growth behavior of a 2099–T83 Al–Li alloy, Int J Fatigue, 59, 244, 10.1016/j.ijfatigue.2013.08.013 Cisko, 2019, Characterization of fatigue behavior of Al-Li alloy 2099, Mater Charact, 151, 496, 10.1016/j.matchar.2019.03.026 Gall, 1999, The debonding and fracture of Si particles during the fatigue of a cast Al-Si alloy, Mater Trans A, 30, 3079, 10.1007/s11661-999-0218-2 Zerbst, 2019, Defects as a root cause of fatigue failure of metallic components. I: Basic aspects, Eng Fail Anal, 97, 777, 10.1016/j.engfailanal.2019.01.055 Xue, 200774, Microstructure-based multistage fatigue modeling of aluminum alloy 7075–T651, Eng Fract Mech Dai, 2020, The Fracture Behavior of 7085–T74 Al Alloy Ultra-Thick Plate During High Cycle Fatigue, Metall Mater Trans A, 51, 3248, 10.1007/s11661-020-05759-4 Ma, 2019, Investigation of high-cycle fatigue and fatigue crack propagation characteristic in 5083-O aluminum alloy, Int J Fatigue, 126, 357, 10.1016/j.ijfatigue.2019.05.020 Avery, 2020, Influence of Grain Refinement and Microstructure on Fatigue Behavior for Solid-State Additively Manufactured Al-Zn-Mg-Cu Alloy, Metall Mater Trans A Phys Metall Mater Sci, 51, 2778, 10.1007/s11661-020-05746-9 Jordon, 2012, Quantifying microstructurally small fatigue crack growth in an aluminum alloy using a silicon-rubber replica method, Int J Fatigue, 36, 206, 10.1016/j.ijfatigue.2011.07.016 Newman, 1994, Small-crack effects in high-strength aluminum, alloys Newman, 2009, Replica-based crack inspection, Eng Fract Mech, 76, 898, 10.1016/j.engfracmech.2008.12.012 GANGLOFF, 1981, Electrical Potential Monitoring of Crack Formation and Subcritical Growth From Small Defects, Fatigue Fract Eng Mater Struct, 4, 15, 10.1111/j.1460-2695.1981.tb01372.x Chan, 201524, High frequency guided ultrasonic waves for hidden fatigue crack growth monitoring in multi-layer model aerospace structures, Smart Mater Struct Zhu, 2019, Experimental investigation of small fatigue crack growth due to foreign object damage in titanium alloy TC4, Mater Sci Eng A, 739, 214, 10.1016/j.msea.2018.10.031 Hu, 2019, Small fatigue crack growth behavior of titanium alloy TC4 at different stress ratios, Fatigue Fract Eng Mater Struct, 42, 339, 10.1111/ffe.12911 Cauthen, 2017, Modeling fatigue crack growth behavior in rolled AZ31 magnesium alloy using CTOD based strip yield modeling, Int J Fatigue, 96, 196, 10.1016/j.ijfatigue.2016.11.031 Bernard, 2013, Observations and modeling of the small fatigue crack behavior of an extruded AZ61 magnesium alloy, Int J Fatigue, 52, 20, 10.1016/j.ijfatigue.2013.02.015 Deng, 2016, Small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169 at 650 °C in air, Eng Fract Mech, 153, 35, 10.1016/j.engfracmech.2015.12.014 Zhu, 2016, Investigation of small fatigue crack initiation and growth behaviour of nickel base superalloy GH4169, Fatigue Fract Eng Mater Struct, 39, 1150, 10.1111/ffe.12430 Ye, 2017, Zhang CC. Effect of stress ratio on the fatigue crack propagation behavior of the nickel-based GH4169 alloy, Acta Metall Sin (English Lett, 30, 809, 10.1007/s40195-017-0567-6 Deng, 2015, Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169, Eng Fract Mech, 134, 433, 10.1016/j.engfracmech.2015.01.002 Zhu, 2018, Comparative study of small crack growth behavior between specimens with and without machining-induced residual stress of alloy GH4169, J Mech Sci Technol, 32, 5251, 10.1007/s12206-018-1023-x Qin, 2015, Grain size effect on multi-scale fatigue crack growth mechanism of Nickel-based alloy GH4169, Eng Fract Mech, 142, 140, 10.1016/j.engfracmech.2015.06.003 Altıntaş, 2013, Alternative Surface Roughness Measurement Technique for Inaccessible Surfaces of Jet Engine Parts Using the Rubber Silicon Replica Method, Metallogr Microstruct Anal, 2, 337, 10.1007/s13632-013-0092-6 Tokaji, 2004, Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy, Int J Fatigue, 26, 1217, 10.1016/j.ijfatigue.2004.03.015 Product Catalog: 2099 Aluminum Alloy Plate | Arconic n.d. Product Catalog: 7065 Aluminum Alloy Plate | Arconic n.d. Chapra, 2012, Applied numerical methods. With MATLAB, Eng Sci Baxter, 1988, Growth of slip bands during fatigue of 6061–T6 aluminum, Metall Trans A, 19, 83, 10.1007/BF02669817 Lin, 1979, The effect of copper content and degree of recrystallization on the fatigue resistance of 7XXX type aluminum alloys I. Low cycle corrosion fatigue, Mater Sci Eng, 39, 27, 10.1016/0025-5416(79)90167-8 Jata, 1986, Fatigue crack growth and fracture toughness behavior of an Al-Li-Cu alloy, Metall Trans A, 17, 1011, 10.1007/BF02661267 Fragomeni, 2005, Effect of Single and Duplex Aging on Precipitation Response, Microstructure, and Fatigue Crack Behavior in Al-Li-Cu Alloy AF/C-458, J Mater Eng Perform, 14, 18, 10.1361/10599490522329 Venkateswara Rao, 1991, A comparison of fatigue-crack propagation behavior in sheet and plate aluminum-lithium alloys, Mater Sci Eng A, 141, 39, 10.1016/0921-5093(91)90705-R Yoder, 1988, Prediction of slip-band facet angle in the fatigue crack growth of an AlLi alloy, Scr Metall, 22, 1241, 10.1016/S0036-9748(88)80139-X Standard A. E647. Stand Test Method Meas Fatigue Crack Growth Rates Annu B ASTM Stand 2000;3. McClintock FA. Considerations for fatigue crack growth relative to crack tip displacement. Eng Against Fatigue, JH Beynon, MW Brown, TC Lindley, RA Smith B Tomkins, Eds, AA Balkema Publ Rotterdam, Netherlands 1999. Laird, 1967 Lardner, 1968, A dislocation model for fatigue crack growth in metals, Philos Mag, 17, 71, 10.1080/14786436808218181 McDowell, 2003, Microstructure-based fatigue modeling of cast A356–T6 alloy, Eng Fract Mech, 70, 49, 10.1016/S0013-7944(02)00021-8