Mô phỏng sự phát triển của nứt mỏi 3-D trong các vết nứt đàn hồi tuyến tính dưới tải nhiệt bằng XFEM

Himanshu Pathak1, Akhilendra Singh2, I. V. Singh3, S. K. Yadav3
1Department of Mechanical Engineering, Shiv Nadar University, Gautam Budha Nagar, India
2Department of Mechanical Engineering, IIT Patna, Patna, India
3Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India

Tóm tắt

Bài báo này đề cập đến mô phỏng sự phát triển của nứt mỏi trong các vết nứt hồi tiếp tuyến 3 chiều bằng phương pháp phần tử chưa hoàn chỉnh mở rộng (XFEM) dưới tải nhiệt tuần hoàn. Cả hai ước lượng nhiệt độ và dịch chuyển đều được nâng cao ngoại sinh bởi các hàm Heaviside và hàm nâng cao phía trước nứt. Sự phát triển của nứt được mô hình hóa bằng các mở rộng tuyến tính liên tiếp, và các điểm cuối của các mở rộng tuyến tính này được nối với nhau bằng các đoạn spline bậc ba để thu được một mặt nứt đã được sửa đổi. Các hình học của nứt khác nhau như nứt phẳng, nứt không phẳng và nứt có hình dạng spline tùy ý đều được mô phỏng dưới các tải sốc nhiệt, tải adiabatic và tải đẳng nhiệt để làm nổi bật sự bền vững và tính linh hoạt của phương pháp XFEM.

Từ khóa

#nứt mỏi #mô phỏng #phương pháp phần tử chưa hoàn chỉnh mở rộng #tải nhiệt #hình học nứt #XFEM

Tài liệu tham khảo

Mukhopadhyay N K, Maiti S K, Kakodkar A. Effect of modelling of traction and thermal singularities on accuracy of SIFS computation through modified crack closure integral in BEM. Engineering Fracture Mechanics, 1999, 64(2): 141–159 Dai H L, Wang X. Thermo-electro-elastic transient responses in piezoelectric hollow structures. International Journal of Solids and Structures, 2005, 42(3–4): 1151–1171 Wang T H, Lai Y S. Submodeling analysis for path-dependent thermomechanical problems. Journal of Electronic Packaging, 2005, 127(2): 135–140 Balderrama R, Cisilino A P, Martinez M. Boundary element method analysis of three-dimensional thermoelastic fracture problems using the energy domain integral. Journal of Applied Mechanics, 2006, 73(6): 959–969 Zhong X C, Lee K Y. A thermal-medium crack model. Mechanics of Materials, 2012, 51: 110–117 Barsoum R S. Triangular quarter-point elements as elastic and perfectly plastic crack tip elements. International Journal for Numerical Methods in Engineering, 1977, 11(1): 85–98 Nash Gifford L, Hilton P D. Stress intensity factors by enriched finite elements. Engineering Fracture Mechanics, 1978, 10(3): 485–496 Nikishkov G P, Atluri S N. An equivalent domain integral method for computing crack tip integral parameters in non-elastic, thermomechanical fracture. Engineering Fracture Mechanics, 1987, 26(6): 851–867 Rhee H C, Salama M M. Mixed-mode stress intensity factor solutions of a warped surface flaw by three-dimensional finite element analysis. Engineering Fracture Mechanics, 1987, 28(2): 203–209 Carter B, Chen C S, Chew L P, Chrisochoides N, Gao G R, Heber G, Ingraffea A R, Krause R, Myers C, Nave D, Pingali K, Stodghill P, Vavasis S, Wawrzynek P A. Parallel FEM simulation of crack propagation—challenges, status and perspectives, Parallel and Distributed Processing Lecture Notes in Computer Science, 2000, 1800: 443–449 Prasad N N V, Aliabadi M H, Rooke D P. Incremental crack growth in thermoelastic problems. International Journal of Fracture, 1994, 66(3): 45–50 Prasad N N V, Aliabadi M H, Rooke D P. The dual boundary element method for transient thermoelastic crack problems. International Journal of Solids and Structures, 1996, 33(19): 2695–2718 Keppas L K, Anifantis N K. BEM prediction of TBC fracture resistance. Engineering against Fracture Proceeding of the 1st Conference, 2009, 551–560 Pant M, Singh I V, Mishra B K. Evaluation of mixed mode stress intensity factors for interface cracks using EFGM. Applied Mathematical Modelling, 2011, 35(7): 3443–3459 Pathak H, Singh A, Singh I V. Fatigue crack growth simulations of homogeneous and bi-material interfacial cracks using element free Galerkin method. Applied Mathematical Modelling, 2014, 38(13): 3093–3123 Melenk J, Babuska I. The partition of unity finite element method: Basic theory and applications. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1–4): 289–314 Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620 Li S, Liu W K. Meshfree Particle Methods. Springer, ISBN 978-3-540-71471-2, 2004 Moral PD, Doucet A. Particle methods: An introduction with applications. RR-6991, 2009, 46 Rabczuk T, Belytschko T. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343 Rabczuk T, Song J H, Belytschko T. Simulations of instability in dynamic fracture by the cracking particles method. Engineering Fracture Mechanics, 2009, 76(6): 730–741 Rabczuk T, Zi G, Bordas S, Nguyen-Xuan H. A simple and robust three-dimensional cracking-particle method. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37–40): 2437–2455 Xu M, Gracie R, Belytschko T. Multiscale Modeling with Extended Bridging Domain Method. Bridging the Scales in Science and Engineering, Oxford Press, 2009, 1–32 Bhardwaj G, Singh I V, Mishra B K, Bui T Q. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different load and boundary conditions. Composite Structures, 2015, 126: 347–359 Bhardwaj G, Singh I V, Mishra B K. Stochastic fatigue crack growth simulation of interfacial crack in bi-layered FGMs using XIGA. Computer Methods in Applied Mechanics and Engineering, 2015, 284: 186–229 Holl M, Loehnert S, Wriggers P. An adaptive multiscale method for crack propagation and crack coalescence. International Journal for Numerical Methods in Engineering, 2013, 93(1): 23–51 Yang S W, Budarapu P R, Mahapatra D R, Bordas S P A, Zi G, Rabczuk T. A meshless adaptive multiscale method for fracture. Computational Materials Science, 2015, 96: 382–395 Kumar S, Singh I V, Mishra B K, Rabczuk T. Modeling and simulation of kinked cracks by virtual node XFEM. Computer Methods in Applied Mechanics and Engineering, 2015, 283: 1425–1466 Sukumar N, Möes N, Moran B, Belytschko T. Extended finite element method for three-dimensional crack modeling. International Journal for Numerical Methods in Engineering, 2000, 48: 1549–1570 Sukumar N, Chopp D L, Moran B. Extended finite element method and fast marching method for three-dimensional fatigue crack propagation. Engineering Fracture Mechanics, 2003, 70(1): 29–48 Daux C, Möes N, Dolbow J, Sukumar N, Belytschko T. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering, 2000, 48: 1741–1760 Sukumar N, Chopp D L, Möes N, Belytschko T. Modelling holes and inclusions by level sets in the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 2001, 190(46–47): 6183–6200 Liu X Y, Xiao Q Z, Karihaloo B L. XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi-materials. International Journal for Numerical Methods in Engineering, 2004, 59(8): 1103–1118 Ventura G, Budyn E, Belytschko T. Vector level sets for description of propagating cracks in finite elements. International Journal for Numerical Methods in Engineering, 2003, 58(10): 1571–1592 Möes N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets-Part-I: Mechanical model. International Journal for Numerical Methods in Engineering, 2002, 53: 2549–2568 Möes N, Gravouil A, Belytschko T. Non-planar 3D crack growth by the extended finite element and level sets-Part II: Level set update. International Journal for Numerical Methods in Engineering, 2002, 53: 2569–2586 Shi J, Chopp D, Lua J, Sukumar N, Belytschko T. Abaqus implementation of extended finite element method using a level set representation for three-dimensional fatigue crack growth and life predictions. Engineering Fracture Mechanics, 2010, 77(14): 2840–2863 Unger J F, Eckardt S, Könke C. Modelling of cohesive crack growth in concrete structures with the extended finite element. Computer Methods in Applied Mechanics and Engineering, 2007, 196(41–44): 4087–4100 Asferg J L, Poulsen P N, Nielsen L O. A consistent partly cracked XFEM element for cohesive crack growth. International Journal for Numerical Methods in Engineering, 2007, 72(4): 464–485 Zhang X D, Bui Q T. A fictitious crack XFEM with two new solution algorithms for cohesive crack growth modelling inn concrete structures. Engineering Computations, 2015, 32(2): 473–497 Chopp D L, Sukumar N. Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method. International Journal of Engineering Science, 2003, 41(8): 845–869 Giner E, Sukumar N, Denia F D, Fuenmayor F J. Extended finite element method for fretting fatigue crack propagation. International Journal of Solids and Structures, 2008, 45(22–23): 5675–5687 Singh I V, Mishra B K, Bhattacharya S, Patil R U. The numerical simulation of fatigue crack growth using extended finite element method. International Journal of Fatigue, 2012, 36(1): 109–119 Bhattacharya S, Singh I V, Mishra B K. Fatigue life estimation of functionally graded materials using XFEM. Engineering with Computers, 2013, 29(4): 427–448 Bhattacharya S, Singh I V, Mishra B K. Mixed-mode fatigue crack growth analysis of functionally graded materials by XFEM. International Journal of Fracture, 2013, 183(1): 81–97 Bhattacharya S, Singh I V, Mishra B K, Bui T Q. Fatigue crack growth simulations of interfacial cracks in bi-layered FGMs using XFEM. Computational Mechanics, 2013, 52(4): 799–814 Bhattacharya S, Singh I V, Mishra B K. Fatigue life simulation of functionally graded materials under cyclic thermal load using XFEM. International Journal of Mechanical Sciences, 2014, 82: 41–59 Kumar S, Singh I V, Mishra B K. A Homogenized XFEM approach to simulate fatigue crack growth problems. Computers & Structures, 2015b, 150: 1–22 Pathak H, Singh A, Singh I V, Yadav S K. A simple and efficient XFEM approach for 3-D cracks simulations. International Journal of Fracture, 2013, 181(2): 189–208 Bui Q T, Zhang Ch. Extended finite element simulation of stationary dynamic cracks in piezoelectric solids under impact loading. Computational Materials Science, 2012, 62: 243–257 Bui Q T, Zhang Ch. Analysis of generalized dynamic intensity factors of cracked magnetoelectrostatic solids by XFEM. Finite Elements in Analysis and Design, 2013, 69: 19–36 Sharma K, Bui Q T, Zhang Ch, Bhargava R R. Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Engineering Fracture Mechanics, 2013, 104: 114–139 Liu P, Yu T T, Bui Q T, Zhang Ch. Transient dynamic crack analysis in non-homogeneous functionally graded piezoelectric materials by the X-FEM. Computational Materials Science, 2013, 69: 542–558 Liu P, Yu T T, Bui Q T, Zhang Ch, Xu Y P, Lim C W. Transient thermal shock fracture analysis of functionally graded piezoelectric materials by the extended finite element method. International Journal of Solids and Structures, 2014, 51(11–12): 2167–2182 Liu P, Bui Q T, Zhu D, Yu T T, Wang J W, Yin S H, Hirose S. Buckling failure analysis of cracked functionally graded plates by a stabilised discrete shear gap extended 3-noded triangular plate element. Composites. Part B, Engineering, 2015, 77: 179–193 Yu T T, Bui Q T, Liu P, Zhang Ch, Hirose S. Interface dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method. International Journal of Solids and Structures, doi: 10.1016/j.ijsolstr.2015.03.037 Pathak H, Singh A, Singh I V. Fatigue crack growth simulations of 3-D problems using XFEM. International Journal of Mechanical Sciences, 2013b, 76: 112–131 Moës N, Dolbow J, Belytchsko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46: 131–150 Sih G C. On singular character of thermal stress near a crack tip. Journal of Applied Mechanics, 1962, 29(3): 587–589 Duflot M. The extended finite element method in thermo-elastic fracture mechanics. International Journal for Numerical Methods in Engineering, 2008, 74(5): 827–847 Fries T P. A corrected XFEM approximation without problems in blending elements. International Journal for Numerical Methods in Engineering, 2008, 75(5): 503–532 Mohammadi S. Extended finite element method for fracture analysis of structures. Singapore: Blackwell Publishing, ISBN-978-1-4051-7060-4, 2008 Singh I V, Mishra B K, Bhattacharya S. XFEM simulation of cracks, holes and inclusions in functionally graded materials. International Journal of Mechanics and Materials in Design, 2011, 7(3): 199–218 Moran B, Shih C. A general treatment of crack tip contour integrals. International Journal of Fracture, 1987, 35(4): 295–310 Banks-Sills L, Dolev O. The conservative M-integral for thermoelastic problems. International Journal of Fracture, 2004, 125(1): 149–170 Erdogan F, Sih G. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 1963, 85(4): 519–527 Das B R. Thermal stresses in a long cylinder containing a penny shaped crack. International Journal of Engineering Science, 1968, 6(9): 497–516