Fatigue Crack Tip Plasticity for Inclined Cracks
Tóm tắt
Từ khóa
Tài liệu tham khảo
ANSYS release 14.5 documentation. ANSYS Inc.
Biner, S. B. (2001). Fatigue crack growth studies under mixed-mode loading. International Journal of Fatigue, 23, S259–S263.
Chang, T., & Guo, W. (1999). Effects of strain hardening and stress state on fatigue crack closure. International Journal of Fatigue, 21, 881–888.
Dugdale, D. S. (1963). Yielding of steel containing slits. Journal of the Mechanics and Physics of Solids, 8, 103.
Elber, W. (1970). Fatigue crack closure under cyclic tension. Engineering Fracture Mechanics, 2, 37–45.
Elber, W. (1971). The significance of fatigue crack closure. In Damage tolerance in aircraft structures (pp. 230–242). ASTM STP486. https://ntrs.nasa.gov/search.jsp?R=19710054465 .
El-Emam, H., Salim, H., & Sallam, H. (2016). Composite patch configuration and prestraining effect on crack tip deformation and plastic zone for inclined cracks. Journal of Composites for Construction, 20(4), 04016002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000655,04016002 .
El-Emam, H., Salim, H., & Sallam, H. (2017). Composite patch configuration and prestress effect on SIFs for inclined cracks in steel plates. Journal of Structural Engineering, 143(5), 04016229. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001727 .
Hammouda, M. M. I., Ahmad, S. E., & Sallam, H. E. M. (1995). Correlation of fatigue crack growth by crack tip deformation behavior. Fatigue and Fracture of Engineering Materials and Structures, 18(1), 93–104.
Hammouda, M. M. I., Ahmad, S. E., Sherbini, A. S., & Sallam, H. E. M. (1999). Deformation behaviour at the tip of physically short fatigue crack due to a single overload. Fatigue and Fracture of Engineering Materials and Structures, 22(2), 145–151.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2002). Mode II stresses intensity factors for central slant cracks with frictional surfaces in uniaxially compressed plates. International Journal of Fatigue, 24(12), 1213–1222.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2003a). Simulation of mixed mode I/II cyclic deformation at the tip of a short kinked inclined crack with frictional surfaces. International Journal of Fatigue, 25, 743–753.
Hammouda, M. M. I., Fayed, A. S., & Sallam, H. E. M. (2003b). Stress intensity factors of a shortly kinked slant central crack with frictional surfaces in uniaxially loaded plates. International Journal of Fatigue, 25(4), 283–298.
Hammouda, M. M. I., Osman, H. G., & Sallam, H. E. M. (2004a). Mode I notch fatigue crack growth behaviour under constant amplitude loading and due to the application of a single tensile overload. International Journal of Fatigue, 26(2), 183–192.
Hammouda, M. M. I., Sallam, H. E. M., & Osman, H. G. (2004b). Significance of crack tip plasticity to early notch fatigue crack growth. International Journal of Fatigue, 26(2), 173–182.
Hannachi, M. T., & Djebaili, H. (2013). Analysis of the elastic energy and crack tip opening displacement with increased yield stress. Journal of Science and Engineering, 2, 163–172.
Isida, N. (1966). Stress-intensity factors for the tension of an eccentrically cracked strip. Journal of Applied Mechanics, 33(3), 674–675.
Ma, F., Deng, X., Sutton, M.A., & Newman, Jr. (1999). A CTOD-based mixed-mode fracture criterion. ASTM STP9 (vol. 135, pp. 86–110).
McEvily, A. J. (2009). On the cyclic crack-tip opening displacement. Fatigue and Fracture of Engineering Materials and Structures, 32, 284–285.
Murakami, Y. (1987). Stress intensity factor handbook (Vol. 1). Oxford: Pergamon Press.
Para, A. F., Sanjust, V., Shoptaw, S., Jarvik, M. E., Ling, W., Rawson, R. A., et al. (1996). Plastic zone size in fatigue cracking. International Journal of Pressure Vessels and Piping, 68, 279–285.
Paul, S. K., & Tarafder, S. (2013). Cyclic plastic deformation response at fatigue crack tips. International Journal of Pressure Vessels and Piping, 101, 81–90.
Plank, R., & Kuhn, G. (1999). Fatigue crack propagation under non-proportional mixed mode loading. Engineering Fracture Mechanics, 62, 203–229.
Qian, J., & Fatemi, A. (1996). Fatigue crack growth under mixed-mode I and II loading. Fracture of Engineering Materials & Structures, 19, 1277–1284.
Qian, J., & Fatemi, A. (1999). Fatigue cracking behavior of 1045 HR steel subjected to mixed-mode I and II loading, Part II: Crack growth behavior and predictions. In T. Cordes & K. Lease (Eds.), Multi-axial fatigue of an induction hardened shaft (pp. 165–174). Warrendale, PA: Society of Automotive Engineers.
Reddy, S. C., & Fatemi, A. (1992). Small crack growth in multiaxial fatigue (vol. 112, pp. 276–298). ASTM STP2. https://doi.org/10.1520/STP24164S .
Rice, J. R. (1967). Mechanics of crack tip deformation and extension by fatigue. In Fatigue crack propagation (pp. 247–310). ASTM STP 415. https://doi.org/10.1520/STP47234S .
Soh, A. K., & Bain, L. C. (2001). Mixed mode fatigue crack growth criteria. International Journal of Fatigue, 23, 427–439.
Tada, H., Paris, P. C., & Irwin, G. R. (1973). The stress analysis of cracks handbook. Hellertown, PA: Del Research Corp.
Wells, A. A. (1963). Application of fracture mechanics at and beyond general yielding. British Welding Journal, 10–11, 563–570.
Wong, S. L., Bold, P. E., Brown, M. W., & Allen, R. J. (2000). Fatigue crack growth rates under sequential mixed-mode I and II loading cycles. Fatigue and Fracture of Engineering Materials and Structures, 23, 667–674.
You, B. R., & Lee, S. B. (1998). Fatigue crack growth behavior of SM45Csteel under mixed-mode I and II loading. Fatigue and Fracture of Engineering Materials and Structures, 21, 1037–1048.