Fate of 1,3-dioxolane in the troposphere: kinetics, mechanism with theoretical support, and atmospheric implications

Anmol Virmani1, Mohini P. Walavalkar1, Asmita Sharma1, Ankur Saha1,2, Sumana Sengupta1,2, Awadhesh Kumar1,2
1Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
2Homi Bhabha National Institute, Mumbai, India

Tóm tắt

The atmospheric fate of 1,3-dioxolane is assessed by measuring the OH and Cl initiated gas-phase oxidation kinetics, and exploring their mechanistic pathways. Absolute OH reaction rate coefficient of 1,3-dioxolane using laser photolysis-laser induced fluorescence technique is found to be (1.27 ± 0.03) × 10–11 cm3 molecule−1 s−1 at 298 ± 2 K and it is in good agreement with the measured relative value of (1.13 ± 0.12) × 10–11 cm3 molecule−1 s−1, using gas-chromatography. Relative value of Cl reaction rate coefficient with 1,3-dioxolane is found to be (1.64 ± 0.60) × 10–10 cm3 molecule−1 s−1. The tropospheric lifetime of 1,3-dioxolane is calculated to be about 22 h under ambient conditions. Interestingly, it reduces to about 8 h near marine boundary layer, where Cl reaction takes over the OH reaction. Such a short lifetime with respect to reaction with OH and Cl suggests the atmospheric impact of 1,3-dioxolane to be local. Formic acid, ethylene carbonate, and 1,2-ethanediol monoformate are observed as stable products in OH as well as Cl oxidation. 1,3-dioxolane may contribute as one of the sources of formic acid in the atmosphere. Theoretical calculations for the OH-initiated hydrogen abstraction of 1,3-dioxolane revealed that the reaction follows an indirect path through the formation of pre- and post-reaction complexes at entrance and exit channels, respectively with the lowest barrier height of 3.5 kcal/mol. Photochemical ozone creation potential of 1,3-dioxolane is calculated.

Từ khóa


Tài liệu tham khảo

Aloisio, S., Hintze, P.E., Vaida, V.: The hydration of formic acid. J. Phys. Chem. A 106, 363–370 (2002). https://doi.org/10.1021/jp012190l Andrei, G., Carter, K., Janeba, Z., Sampath, A., Schang, L.M., Tarbet, E.B., Hodge, R.A.V., Bray, M., Esté, J.A.: Highlights of the 30th International Conference on Antiviral Research. Antiviral Res. 145, 184–196 (2017). https://doi.org/10.1016/j.antiviral.2017.07.017 Andrews, B.K.: 1, 3,-dioxolane, an alternative to formalin as a standard for formaldehyde. Textil. Res. J. 57, 705–710 (1987). https://doi.org/10.1177/004051758705701205 Atkinson, R., Aschmann, S.M.: Kinetics of the gas phase reaction of Cl atoms with a series of organics at 296 ± 2 K and atmospheric pressure. Int. J. Chem. Kinet. 1, 33–41 (1985). https://doi.org/10.1002/kin.550170105 Cabani, S., Conti, G., Lepori, L.: Thermodynamic study on aqueous dilute solutions of organic compounds. Part 2.—Cyclic ethers. Trans. Faraday Soc. 67, 1943–1950 (1971). https://doi.org/10.1039/TF9716701943 Calve, S.L., Mellouki, A., Bras, G.L.: Kinetic studies of OH reactions with propylal, butylal and 1,3-dioxolane. Phys. Chem. Chem. Phys. 4, 5622–5626 (2002). https://doi.org/10.1039/B206723D Calvert, J.G., Atkinson, R., Becker, K.H., Seinfeld, J.H., Wallington, T.J., Yarwood, G.: The Mechanisms of Atmospheric Oxidation of the Aromatic Hydrocarbons. Oxford University Press, New York (2002) Chen, L., Takenaka, N., Bandow, H., Maeda, Y.: Henry’s law constants for C2–C3 fluorinated alcohols and their wet deposition in the atmosphere. Atmos. Environ. 37, 4817–4822 (2003). https://doi.org/10.1016/j.atmosenv.2003.08.002 Chen, R., Jiang, Y., Li, J., An, Z., Chen, X., Chen, P.: Dielectric and optical anisotropy enhanced by 1,3-dioxolane terminal substitution on tolane-liquid crystals. J. Mater. Chem. C 3, 8706–8711 (2015). https://doi.org/10.1039/C5TC01712B Cheremisinoff, N.P.: Industrial Solvents Handbook, Revised And Expanded (2nd ed.). CRC Press, Marcel Dekker, New York (2003). https://doi.org/10.1201/9780203911334 Daranlot, J., Bergeat, A., Caralp, F., Caubet, P., Costes, M., Forst, W., Loison, J.C., Hickson, K.M.: Gas-phase kinetics of hydroxyl radical reactions with alkenes: experiment and theory. ChemPhysChem 11, 4002–4010 (2010). https://doi.org/10.1002/cphc.201000467 Derwent, R.G., Jenkin, M.E.: Hydrocarbons and the long-range transport of ozone and pan across Europe. Atmos. Environ. A, Gen. Top. 25, 1661–1678 (1991). https://doi.org/10.1016/0960-1686(91)90025-3 Dinis, C.M.F., Geiger, H., Wiesen, P.: Kinetics of the reactions of OH(X2Π) radicals with 1,3-dioxolane and selected dialkoxy methanes. Phys. Chem. Chem. Phys. 3, 2831–2835 (2001). https://doi.org/10.1039/B100181G Dolislager, L.J.: The effect of California’s wintertime oxygenated fuels program on ambient carbon monooxide concentrations. J. Air Waste Manage. 47, 775–783 (1997). https://doi.org/10.1080/10473289.1997.10463935 Forster, P.M., Thompson, D.W.J., Baldwin, M., Chipperfifield, M.P.: Stratospheric Changes and Climate,Chapter 4 in Scientifific Assessment of Ozone Depletion: 2010, Global Ozone Research and Monitoring Project—Report No. 52. Cambridge University Press, Geneva, Switzerland (2010) Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E.: Gaussian, Inc., Wallingford CT (2004) Graedel, T.E., Hawkins, D.T., Claxton, L.D.: Atmospheric Chemical Compounds: Sources, Occurrence, and Bioassay. Academic Press, Orlando, Florida (1986) Gupta, B.S., Fang, M.-Y., Lee, M.-J.: Separation of 1,3-dioxolane from its azeotropic aqueous solution by using Good’s buffer ionic liquid [TMA][EPPS]. Fluid Phase Equil. 418, 119–124 (2016). https://doi.org/10.1016/j.fluid.2015.10.033 Hammond, G.S.: A Correlation of Reaction Rates. J. Am. Chem. Soc. 77, 334–338 (1955). https://doi.org/10.1021/ja01607a027 Hasegawa, A.: Measurement of Ethylene Oxide in the Atmosphere. J. Environ. Chem. 11, 11–15 (2001) Hodnebrog, O., Etminan, M., Fuglestvedt, J.S., Marston, G., Myhre, G., Nielsen, C.J., Shine, K.P., Wallington, T.J.: Global warming potentials and radiative efficiencies of halocarbons and related compounds: a comprehensive review. Rev. Geophys. 51, 301–378 (2013). https://doi.org/10.1002/rog.20013 Illés, A., Rózsa, Z.B., Thangaraj, R., Gombos, E.D., Dóbé, S., Giri, B.R., Szőri, M.: An experimental and theoretical kinetic study of the reactions of hydroxyl radicals with tetrahydrofuran and two deuterated tetrahydrofurans. Chem. Phys. Lett. 776, 138698 (2021) Jenkin, M.E., Derwent, R.G., Wallington, T.J.: Photochemical ozone creation potentials for volatile organic compounds: rationalization and estimation. Atmos. Environ. 163, 128–137 (2017). https://doi.org/10.1016/j.atmosenv.2017.05.024 Kawade, M., Sharma, A., Srinivas, D., Saha, A., Upadhyaya, H.P., Kumar, A., Naik, P.D:. Rate coefficients of hydroxyl radical reaction with dimethyl ether over a temperature range of 257–333 K. Chem. Phys. Lett. 706, 558–563 (2018a), https://doi.org/10.1016/j.cplett.2018.06.065 Kawade, M.N., Srinivas, D., Upadhyaya, H.P.: Gas phase OH radical reaction with 2-Chloroethyl Vinyl Ether in the 256–333 K temperature range: A combined LP-LIF and computational Study. ChemistrySelect 23, 5910–5919 (2018b). https://doi.org/10.1002/slct.201800885 Kawade, M.N., Srinivas, D., Upadhyaya, H.P.: Kinetics of Gas Phase OH Radical Reaction with Thiophene in the 272–353 K Temperature Range: A Laser Induced Fluorescence Study. Chem. Phys. Lett. 682, 154–159 (2017). https://doi.org/10.1016/j.cplett.2017.05.07 Klein, T., Barnes, I., Becker, K.H., Fink, E.H., Zabel, F.: Pressure dependence of the rate constants for the reactions of C2H4 and C3H8 with OH radicals at 295 K. J. Phys. Chem. 88, 5020–5025 (1984) Küçük, H.B., Yusufoğlu, A., Mataracı, E., Döşler, S.: Synthesis and biological activity of new 1,3-Dioxolanes as potential antibacterial and antifungal compounds. Molecules 16, 6805–6815 (2011). https://doi.org/10.3390/molecules16086806 Lohmann, R., Breivik, K., Dachs, J., Muir, D.: Global fate of POPs: Current and future research directions. Environ. Pollut. 150, 150–165 (2007) McGillen, M.R., Carter, W.P.L., Mellouki, A., Orlando, J.J., Picquet-Varrault, B., Wallington, T.J.: Database for the kinetics of the gas-phase atmospheric reactions of organic compounds. Earth Syst. Sci. Data 12, 1203–1216 (2020). https://doi.org/10.5194/essd-12-1203-2020 Moriarty, J., Sidebottom, H., Wenger, J., Mellouki, A., Bras, G.L.: Kinetic studies on the reactions of hydroxyl radicals with cyclic ethers and aliphatic diethers. J. Phys. Chem. A 107, 1499–1505 (2003) Moriarty, J., Wenger, J., Sidebottom, H.: Kinetic studies on the reactions of hydroxyl radicals with cyclic ethers. WIT Trans. Ecol. Environ. 28, 115–119 (1999). https://doi.org/10.2495/EURO990221 Ovsyannikova, M.N., Vol’eva, V.B., Belostotskaya, I.S., Komissarova, N.L., Malkova, A.V., Kurkovskaya, L.N.: Antibacterial activity of substituted 1,3-Dioxolanes. Pharm. Chem. J. 47, 142–145 (2013). https://doi.org/10.1007/s11094-013-0913-6 Pandit, S., B. Hornung, Dunning, G.T., Preston, T.J., Brazener, K., Orr-Ewing, A.J.: Primary vs secondary H- atom abstraction in the Cl-Atom reaction with n-Pentane. Phys. Chem. Chem. Phys. 19, 1614–1626 (2017). https://doi.org/10.1039/C6CP07164C Persis S. de, Dollet A., Teyssandier F.: Pressure Dependence of Gas-Phase Reaction Rates. J. Chem. Educ., 81, 6, 832 (2004). https://doi.org/10.1021/ed081p832 Porter, E., Wenger, J., Treacy, J., Sidebottom, H., Mellouki, A., Téton, S., LeBras, G.: Kinetic studies on the reactions of hydroxyl radicals with diethers and hydroxyethers. J. Phys. Chem. A 101, 5770–5775 (1997). https://doi.org/10.1021/jp971254i Prinn, R.G., Huang, J., Weiss, R.F., Cunnold, D.M., Fraser, P.J.: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292, 1882–1888 (2001). https://doi.org/10.1126/science.1058673 Roquitte, B.C.: The photochemistry of 1,3-Dioxolane. J. Phys. Chem. 70, 2863–2868 (1966). https://doi.org/10.1021/j100881a023 Sauer, C.G., Barnes, I., Becker, K.H., Geiger, H., Wallington, T.J., Christensen, L.K., Platz, J., Nielsen, O.J.: Atmospheric chemistry of 1,3-Dioxolane: Kinetic, mechanistic, and modeling Study of OH radical initiated oxidation. J. Phys. Chem. A 103, 5959–5966 (1999). https://doi.org/10.1021/jp991025r SenGupta, S., Indulkar, Y., Kumar, A., Dhanya, S., Naik, P.D.: Kinetic study of the gas-phase reaction of hydroxyl radical with CF3CH2OCH2CF3 using the laser photolysis-laser induced fluorescence method. Int. J. Chem. Kinet. 42, 519–525 (2010). https://doi.org/10.1002/kin.20507 Schure, A.F.H. T., Larsson, P., Agrell, C., Boon, J.P.: Atmospheric transport of polybrominated diphenyl ethers and polychlorinated biphenyls to the Baltic Sea. Environ. Sci. Technol. 38, 1282–1287 (2004). https://doi.org/10.1021/es0348086 Senosiain, J.P., Klippenstein, S.J., Miller, J.A.: Reaction of ethylene with hydroxyl radicals: A theoretical study. J. Phys. Chem. A 110, 6960–6970 (2006). https://doi.org/10.1021/jp0566820 Sharma, A., Pushpa, K.K., Dhanya, S., Naik, P.D., Bajaj, P.N.: Rate constants for the gas-phase reactions of chlorine atoms with 1,4-cyclohexadiene and1,5- cyclooctadiene at 298 K. Int. J. Chem. Kinet. 43, 431–440 (2011). https://doi.org/10.1002/kin.20567 Song, J., Zello, V., Boehman, A.L., Waller, F.J.: Comparison of the Impact of Intake Oxygen Enrichment and Fuel Oxygenation on Diesel Combustion and Emissions. Energ. Fuel 18, 1282–1290 (2004) Spicer, C.W., Chapman, E.G., Finlayson-Pitts, B.J., Plastridge, R.A., Hubbe, J.M., Fast, J.D., Berkowitz, C.M.: Unexpectedly high concentrations of molecular chlorine in coastal air. Nature 394, 353–356 (1998). https://doi.org/10.1038/28584 Squillace, P.J., Zogorski, J.S., Wilber, W.G., Price, C.V.: Preliminary assessment of the occurrence and possible sources of MTBE in groundwater in the United States, 1993±1994. Environ. Sci. Technol. 30, 1721–1730 (1996). https://doi.org/10.1021/es9507170 Su, Y., Hung, H., Sverko, E., Fellin, P., Li, H.: Multi-year measurements of polybrominated diphenyl ethers (PBDEs) in the Arctic atmosphere. Atmos. Environ. 41, 8725–8735 (2007). https://doi.org/10.1016/j.atmosenv.2007.07.032 Szori, M., Abou-Abdo, T., Fittschen, C., Csizmadia, I.G., Viskolcz, B.: Allylic hydrogen abstraction: H-abstraction from 1,4 type polyalkenes as a model for free radical trapping by polyunsaturated fatty acids (PUFAs). Phys. Chem. Chem. Phys. 9, 1931–1940 (2007). https://doi.org/10.1039/B613048H Torré, J.-P., Haillot, D., Rigal, S., Lima, R.D.S., Dicharry, C., Bedecarrats, J.P.: 1, 3 Dioxolane versus tetrahydrofuran as promoters for CO2- hydrate formation: Thermodynamics properties, and kinetics in presence of sodium dodecyl sulfate. Chem. Eng. Sci. 126, 688–697 (2015). https://doi.org/10.1016/j.ces.2015.01.018 Wallington, T.J., Hurley, M.D., Ball, J.C., Straccia, A.M., Platz, J., Christensen, L.K., Sehested, J., Nielsen, O.J.: Atmospheric chemistry of dimethoxymethane (CH3OCH2OCH3): Kinetics and mechanism of its reaction with OH radicals and fate of the alkoxy radicals CH3OCHO(•)OCH3 and CH3OCH2OCH2O(•). J. Phys. Chem. A 101, 5302–5308 (1997). https://doi.org/10.1021/jp9631184 Wang, Y., Xu, R., Xiao, B., Lv, D., Peng, Y., Zheng, Y., Shen, Y., Chai, J., Lei, X., Luo, S., Wang, X., Liang, X., Feng, J., Liu, Z.: A poly(1,3-dioxolane) based deep-eutectic polymer electrolyte for high performance ambient polymer lithium battery. Mater. Today Phys. 22, 100620 (2022). https://doi.org/10.1016/j.mtphys.2022.100620 Zhang, R.M., Truhlar, D.G., Xu, X.: Kinetics of the toluene reaction with OH Radical. Research 19, 5373785 (2019). https://doi.org/10.34133/2019/5373785