Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

IEEE Transactions on Pattern Analysis and Machine Intelligence - Tập 39 Số 6 - Trang 1137-1149 - 2017
Shaoqing Ren1, Kaiming He2, Ross Girshick3, Jian Sun2
1University of Science and Technology of China, Hefei, Anhui, China
2[Visual Computing group, Microsoft Research, Beijing, China]
3Facebook AI Research, Seattle, WA 98109#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

10.5244/C.29.5

10.1145/2647868.2654889

nair, 0, Rectified linear units improve restricted Boltzmann machines, Proc 27th Int Conf Mach Learn, 807

zeiler, 0, Visualizing and understanding convolutional neural networks, Proc 13th Eur Conf Comput Vis, 818

chorowski, 0, Attention-based models for speech recognition, Proc Adv Neural Inform Process Syst, 577

ren, 2015, Object detection networks on convolutional feature maps, arXiv 1504 06066

10.1145/3065386

10.1007/s11263-015-0816-y

10.1162/neco.1989.1.4.541

10.1109/CVPR.2015.7298594

10.1109/TPAMI.2016.2577031

hoiem, 0, Diagnosing error in object detectors, Proc 12th Eur Conf Comput Vis, 340

10.1007/s11263-009-0275-4

lin, 0, Microsoft COCO: Common objects in context, Proc Eur Conf Comput Vis, 740

song, 2015, Deep sliding shapes for amodal 3d object detection in RGB-D images, arXiv 1511 02300

zhu, 2015, DeePM: A deep part-based model for object detection and semantic part localization, arXiv 1511 07131

dai, 2015, Instance-aware semantic segmentation via multi-task network cascades, arXiv 1512 04412

johnson, 2015, Densecap: Fully convolutional localization networks for dense captioning, arXiv 1511 07571

kislyuk, 2015, Human curation and convnets: Powering item-to-item recommendations on pinterest, arXiv 1511 04003

he, 2015, Deep residual learning for image recognition, arXiv 1512 03385

hosang, 0, How good are detection proposals, really?, Proc Brit Mach Vis Conf

pinheiro, 0, Learning to segment object candidates, Proc Adv Neural Inform Process Syst, 1981

10.1007/s11263-013-0620-5

szegedy, 2015, Scalable, high-quality object detection, arXiv 1412 1441

simonyan, 0, Very deep convolutional networks for large-scale image recognition, Proc Int Conf Learn Representations

zitnick, 0, Edge boxes: Locating object proposals from edges, Proc 13th Eur Conf Comput Vis, 391

10.1109/CVPR.2015.7299025

10.1109/CVPR.2014.81

10.1109/TPAMI.2009.167

10.1109/CVPR.2015.7298965

10.1109/ICCV.2015.169

sermanet, 0, Overfeat: Integrated recognition, localization and detection using convolutional networks, Proc Int Conf Learn Representations

he, 0, Spatial pyramid pooling in deep convolutional networks for visual recognition, Proc 13th Eur Conf Comput Vis, 346

10.1109/TPAMI.2015.2465908

10.1109/TPAMI.2011.231

chavali, 2015, Object-proposal evaluation protocol is 'gameable’, arXiv 1505 05836

10.1109/TPAMI.2012.28

10.1109/CVPR.2014.49

10.1109/CVPR.2014.276

szegedy, 0, Deep neural networks for object detection, Proc Neural Inform Process Syst