Fast, simple and highly specific molecular detection of Vibrio alginolyticus pathogenic strains using a visualized isothermal amplification method

Dong Yü1, Panpan Zhao2, Li Chen1, Huahua Wu1, Xinxin Si1, Xin Xin Shen1, Hui Shen3, Yi Qiao3, Shanyuan Zhu4, Qiong Chen5, Weiwei Jia1, Jingquan Dong1, Juan Li5, Song Gao6
1Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
2Key Laboratory of Zoonosis Research by Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, 130062, China
3Jiangsu Institute of Oceanology and Marine Fisheries, Nantong 226007, China
4Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
5Wuhan Institute for Food and Cosmetic Control, Wuhan, 430000, China
6School of Pharmacy, Jiangsu Ocean University, Lianyungang, 222005, China

Tóm tắt

Abstract Background

Vibrio alginolyticus is an important pathogen that has to be closely monitored and controlled in the mariculture industry because of its strong pathogenicity, quick onset after infection and high mortality rate in aquatic animals. Fast, simple and specific methods are needed for on-site detection to effectively control outbreaks and prevent economic losses. The detection specificity towards the pathogenic strains has to be emphasized to facilitate pointed treatment and prevention. Polymerase chain reaction (PCR)-based molecular approaches have been developed, but their application is limited due to the requirement of complicated thermal cycling machines and trained personnel.

Results

A fast, simple and highly specific detection method for V. alginolyticus pathogenic strains was established based on isothermal recombinase polymerase amplification (RPA) and lateral flow dipsticks (LFD). The method targeted the virulence gene toxR, which is reported to have good coverage for V. alginolyticus pathogenic strains. To ensure the specificity of the method, the primer-probe set of the RPA system was carefully designed to recognize regions in the toxR gene that diverge in different Vibrio species but are conserved in V. alginolyticus pathogenic strains. The primer-probe set was determined after a systematic screening of amplification performance, primer-dimer formation and false positive signals. The RPA-LFD method was confirmed to have high specificity for V. alginolyticus pathogenic strains without any cross reaction with other Vibrio species or other pathogenic bacteria and was able to detect as little as 1 colony forming unit (CFU) per reaction without DNA purification, or 170 fg of genomic DNA, or 6.25 × 103 CFU/25 g in spiked shrimp without any enrichment. The method finishes detection within 30 min at temperatures between 35 °C and 45 °C, and the visual signal on the dipstick can be directly read by the naked eye. In an application simulation, randomly spiked shrimp homogenate samples were 100% accurately detected.

Conclusions

The RPA-LFD method developed in this study is fast, simple, highly specific and does not require complicated equipment. This method is applicable for on-site detection of V. alginolyticus pathogenic strains for the mariculture industry.

Từ khóa


Tài liệu tham khảo

Austin B, Stuckey LF, Robertson PAW, Effendi I, Griffith DRW. A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis. 2010;18(1):93–6.

Ahmed R, Rafiquzaman SM, Hossain MT, Lee JM, Kong IS. Species-specific detection of Vibrio alginolyticus in shellfish and shrimp by real-time PCR using the groEL gene. Aquacult Int. 2015;24(1):1–14.

Austin B. Vibrios as causal agents of zoonoses. Vet Microbiol. 2010;140(3–4):310–7.

Citil BE, Derin S, Sankur F, Sahan M, Citil MU. Vibrio alginolyticus associated chronic myringitis acquired in mediterranean waters of Turkey. Infect Dis-nor. 2015;2015(42):187212.

Gahrn-Hansen B, Hornstrup MK. Extraintestinal infections caused by Vibrio parahaemolyticus and Vibrio alginolyticus at the county of Funen 1987-19. Ugeskr Laeger. 1994;156(37):5279–82.

Liu XF, Zhang H, Liu X, Gong Y, Chen Y, Cao Y, Hu C. Pathogenic analysis of Vibrio alginolyticus infection in a mouse model. Folia Microbiol (Praha). 2014;59(2):167–71.

Aamri FE, Caballero MJ, Real F, Acosta F, Deniz S, Roman L, Padilla D. Streptococcus iniae in gilthead seabream (Sparus aurata, L.) and red porgy (Pagrus pagrus, L.): ultrastructural analysis. Vet Pathol. 2015;52(1):209–12.

Abbate F, Guerrera MC, Montalbano G, Ciriaco E, Germana A. Morphology of the tongue dorsal surface of gilthead seabream (Sparus aurata). Microsc Res Tech. 2012;75(12):1666–71.

Vendramin N, Patarnello P, Toffan A, Panzarin V, Cappellozza E, Tedesco P, Terlizzi A, Terregino C, Cattoli G. Viral Encephalopathy and Retinopathy in groupers (Epinephelus spp.) in southern Italy: a threat for wild endangered species? BMC Vet Res. 2013;9:20.

Liu PC, Lin JY, Hsiao PT, Lee KK. Isolation and characterization of pathogenic Vibrio alginolyticus from diseased cobia Rachycentron canadum. J Basic Microbiol. 2004;44(1):23–8.

Phuoc LH, Corteel M, Nauwynck HJ, Pensaert MB, Alday-Sanz V, Van den Broeck W, Sorgeloos P, Bossier P. Increased susceptibility of white spot syndrome virus-infected Litopenaeus vannamei to Vibrio campbellii. Environ Microbiol. 2008;10(10):2718–27.

Jayaprakash NS, Pai SS, Philip R, Singh IS. Isolation of a pathogenic strain of Vibrio alginolyticus from necrotic larvae of Macrobrachium rosenbergii (de man). J Fish Dis. 2006;29(3):187–91.

Lee KK. Pathogenesis studies on Vibrio alginolyticus in the grouper, Epinephelus malabaricus. Bloch et Schneider Microb Pathog. 1995;19(1):39–48.

Selvin J, Lipton AP. Vibrio alginolyticus associated with white spot disease of Penaeus monodon. Dis Aquat Org. 2003;57(1–2):147–50.

Salamone M, Nicosia A, Ghersi G, Tagliavia M. Vibrio proteases for biomedical applications: Modulating the proteolytic secretome of Vibrio alginolyticus and Vibrio parahaemolyticus for Improved enzymes production. Microorganisms. 2019;7(10):387–402.

Bakeeva LE, Drachev AL, Metlina AL, Skulachev VP, Chumakov KM. Similarity of Vibrio alginolyticus, V. cholerae and other Vibrio species with respect to the structure of their flagellar apparatus and ribosomal 5S-RNA. Biokhimiia. 1987;52(1):8–14.

Rui H, Liu Q, Ma Y, Wang Q, Zhang Y. Roles of LuxR in regulating extracellular alkaline serine protease a, extracellular polysaccharide and mobility of Vibrio alginolyticus. FEMS Microbiol Lett. 2008;285(2):155–62.

Zhou Z, Pang H, Ding Y, Cai J, Huang Y, Jian J, Wu Z. VscO, a putative T3SS chaperone escort of Vibrio alginolyticus, contributes to virulence in fish and is a target for vaccine development. Fish Shellfish Immunol. 2013;35(5):1523–31.

Kim HJ, Ryu JO, Lee SY, Kim ES, Kim HY. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics. BMC Microbiol. 2015;15:239.

Hazen TH, Martinez RJ, Chen Y, Lafon PC, Garrett NM, Parsons MB, Bopp CA, Sullards MC, Sobecky PA. Rapid identification of Vibrio parahaemolyticus by whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol. 2009;75(21):6745–56.

Warner JM, Oliver JD. Randomly amplified polymorphic DNA analysis of clinical and environmental isolates of Vibrio vulnificus and other vibrio species. Appl Environ Microbiol. 1999;65(3):1141–4.

Bross MH, Soch K, Morales R, Mitchell RB. Vibrio vulnificus infection: diagnosis and treatment. Am Fam Physician. 2007;76(4):539–44.

Liu H, Wang Q, Liu Q, Cao X, Shi C, Zhang Y. Roles of Hfq in the stress adaptation and virulence in fish pathogen Vibrio alginolyticus and its potential application as a target for live attenuated vaccine. Appl Microbiol Biotechnol. 2011;91(2):353–64.

Scarano C, Spanu C, Ziino G, Pedonese F, Dalmasso A, Spanu V, Virdis S, De Santis EP. Antibiotic resistance of Vibrio species isolated from Sparus aurata reared in Italian mariculture. New Microbiol. 2014;37(3):329–37.

Di Pinto A, Ciccarese G, Tantillo G, Catalano D, Forte VT. A collagenase-targeted multiplex PCR assay for identification of Vibrio alginolyticus, Vibrio cholerae, and Vibrio parahaemolyticus. J Food Prot. 2005;68(1):150–3.

Xie ZY, Hu CQ, Chen C, Zhang LP, Ren CH. Investigation of seven Vibrio virulence genes among Vibrio alginolyticus and Vibrio parahaemolyticus strains from the coastal mariculture systems in Guangdong. China Lett Appl Microbiol. 2005;41(2):202–7.

Cai SH, Wu ZH, Jian JC, Lu YS. Cloning and expression of gene encoding the thermostable direct hemolysin from Vibrio alginolyticus strain HY9901, the causative agent of vibriosis of crimson snapper (Lutjanus erythopterus). J Appl Microbiol. 2007;103(2):289–96.

Guglielmetti P, Bravo L, Zanchi A, Monte R, Lombardi G, Rossolini GM. Detection of the Vibrio cholerae heat-stable enterotoxin gene by polymerase chain reaction. Mol Cell Probes. 1994;8(1):39–44.

Chen C, Wang QB, Liu ZH, Zhao JJ, Jiang X, Sun HY, Ren CH, Hu CQ. Characterization of role of the toxR gene in the physiology and pathogenicity of Vibrio alginolyticus. Antonie Van Leeuwenhoek. 2012;101(2):281–8.

Cai S, Cheng H, Pang H, Lu Y, Jian J. Role of the toxR gene from fish pathogen Vibiro alginolyticus in the physiology and virulence. Indian J Microbiol. 2017;57(4):477–84.

Hu J, Huang R, Sun Y, Wei X, Wang Y, Jiang C, Geng Y, Sun X, Jing J, Gao H, et al. Sensitive and rapid visual detection of Salmonella Typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks. J Microbiol Methods. 2019;158:25–32.

Piepenburg O, Williams CH, Stemple DL. DNA detection using recombination proteins. PLoS Biol. 2006;4(7):1115–21.

Liu WJ, Yang YT, Du SM, Yi HD, Xu DN, Cao N, Jiang DL, Huang YM, Tian YB. Rapid and sensitive detection of goose parvovirus and duck-origin novel goose parvovirus by recombinase polymerase amplification combined with a vertical flow visualization strip. J Virol Methods. 2019;266:34–40.

Saxena A, Pal V, Tripathi NK, Goel AK. Development of a rapid and sensitive recombinase polymerase amplification-lateral flow assay for detection of Burkholderia mallei. Transbound Emerg Dis. 2019;66(2):1016–22.

Li TT, Wang JL, Zhang NZ, Li WH, Yan HB, Li L, Jia WZ, Fu BQ. Rapid and Visual Detection of Trichinella Spp. Using a Lateral Flow Strip-Based Recombinase Polymerase Amplification (LF-RPA) Assay. Front Cell Infect Microbiol. 2019;9(1).

Zhao G, Hou P, Huan Y, He C, Wang H, He H. Development of a recombinase polymerase amplification combined with a lateral flow dipstick assay for rapid detection of the Mycoplasma bovis. BMC Vet Res. 2018;14(1):412.

Ghosh DK, Kokane SB, Kokane AD, Warghane AJ, Motghare MR, Bhose S, Sharma AK, Reddy MK. Development of a recombinase polymerase based isothermal amplification combined with lateral flow assay (HLB-RPA-LFA) for rapid detection of "Candidatus Liberibacter asiaticus". PLoS One. 2018;13(12):e0208530.

Zhao G, He H, Wang H. Use of a recombinase polymerase amplification commercial kit for rapid visual detection of Pasteurella multocida. BMC Vet Res. 2019;15(1):154.

Dai T, Yang X, Hu T, Jiao B, Xu Y, Zeng X, Shen D. Comparative evaluation of a novel recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay, LAMP, conventional PCR, and leaf-disc baiting methods for detection of Phytophthora sojae. Front Microbiol. 2019;10:1884.

Luo P, Hu CQ. Vibrio alginolyticus gyrB sequence analysis and gyrB-targeted PCR identification in environmental isolates. Dis Aquat Org. 2008;82(3):209–16.

Cai SH, Lu YS, Wu ZH, Jian JC, Wang B, Huang YC. Loop-mediated isothermal amplification method for rapid detection of Vibrio alginolyticus, the causative agent of vibriosis in mariculture fish. Lett Appl Microbiol. 2010;50(5):480–5.

Annie SSG, Lipton AP. Pathogenicity and antibiotic susceptibility of Vibrio species isolated from the captive-reared tropical marine ornamental blue damsel fish, Pomacentrus caeruleus (Quoy and Gaimard, 1825). Indian J Mar Sci. 2012;41(4):348–54.

Crawford JA, Krukonis ES, Dirita VJ. Membrane localization of the ToxR winged-helix domain is required for TcpP-mediated virulence gene activation in Vibrio cholerae. Mol Microbiol. 2010;47(5):1459–73.

Liu XF, Cao Y, Zhang HL, Chen YJ, Hu CJ. Complete genome sequence of Vibrio alginolyticus ATCC 17749T. Genome Announc. 2015;3(1):e01500–14.

Wei S, Zhao H, Xian Y, Hussain MA, Wu X. Multiplex PCR sssays for the detection of Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio vulnificus and Vibrio cholerae with an internal amplification control. Diagn Microbiol Infect Dis. 2014;79(2):115–8.

Plaon S, Longyant S, Sithigorngul P, Chaivisuthangkura P. Rapid and sensitive detection of Vibrio alginolyticus by loop-mediated isothermal amplification combined with a lateral flow dipstick targeted to the rpoX gene. J Aquat Anim Health. 2015;27(3):156–63.

Zhou S, Hou Z, Li N, Qin Q. Development of a SYBR green I real-time PCR for quantitative detection of Vibrio alginolyticus in seawater and seafood. J Appl Microbiol. 2007;103(5):1897–906.

Hiergeist A, Reischl U. Multicenter quality assessment of 16S ribosomal DNA-sequencing for microbiome analyses reveals high inter-center variability. Int J Medl Microbiol. 2016;306(5):334–42.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876–488.