Fast microwave synthesis of Fe3O4 and Fe3O4/Ag magnetic nanoparticles using Fe2+ as precursor

Inorganic Materials - Tập 46 Số 10 - Trang 1106-1111 - 2010
Baozhan Zheng1, Minghui Zhang1, Dan Xiao1, Yong Jun Jin2, Martin M. F. Choi3
1School of Chemical Engineering, Sichuan University, Chengdu, China
2College of Materials Science and Engineering, Sichuan University, Chengdu, China
3Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Raj, K. and Moskowitz, R., Commercial Applications of Ferrofluids, J. Magn. Magn. Mater., 1990, vol. 85, pp. 233–245.

Hyeon, T., Chemical Synthesis of Magnetic Nanoparticles, Chem. Commun., 2003, vol. 8, pp. 927–934.

Tsang, S.C., Caps, V., Paraskevas, I., et al., Magnetically Separable, Carbon-Supported Nanocatalysts for the Manufacture of Fine Chemicals, Angew. Chem., 2004, vol. 116, pp. 5763–5767.

Rana, S., White, P., and Bradley, M., Synthesis of Magnetic Scavenging Beads for Solid Phase Synthesis and Reaction Scavenging, Tetrahedron Lett., 1999, vol. 40, pp. 8137–8140.

Saravanan, M., Bhaskar, K., Maharajan, G., and Pillai, K.S., Ultrasonically Controlled Release and Targeted Delivery of Diclofenac Sodium via Gelatin Magnetic Microspheres, Int. J. Pharm., 2004, vol. 283, pp. 71–82.

Namba, Y., Usami, M., and Suzuki, O., Highly Sensitive Electrochemiluminescence Immunoassay Using the Ruthenium Chelate-Labeled Antibody Bound on the Magnetic Micro Beads, Anal. Sci., 1999, vol. 15, pp. 1087–1093.

Guo, Z., Bai, S., and Sun, Y., Preparation and Characterization of Immobilized Lipase on Magnetic Hydrophobic Microspheres, Enzyme Microb. Technol., 2003, vol. 32, no. 7, pp. 776–782.

Leslie-Pelecky, D.L. and Rieke, R.D., Magnetic Properties of Nanostructured Materials, Chem. Mater., 1996, vol. 8, pp. 1770–1783.

Jolivet, J.P., Chaneac, C., and Tronc, E., Iron Oxide Chemistry: From Molecular Clusters to Extended Solid Networks, Chem. Commun., 2004, vol. 5, pp. 481–487.

Wan, S.R., Huang, J.S., Yan, H.S., and Liu, K.L., Size-Controlled Preparation of Magnetite Nanoparticles in the Presence of Graft Copolymers, J. Mater. Chem., 2006, vol. 16, pp. 298–303.

Zhou, Z.H., Wang, J., Liu, X., and Chan, H.S.O., Synthesis of Fe3O4 Nanoparticles from Emulsions, J. Mater. Chem., 2001, vol. 11, pp. 1704–1709.

Albornoz, C. and Jacobo, S.E., Preparation of a Biocompatible Magnetic Film from an Aqueous Ferrofluid, J. Magn. Magn. Mater., 2006, vol. 305, pp. 12–15.

Hou, Y.L., Yu, J.F., and Gao, S., Solvothermal Reduction Synthesis and Characterization of Superparamagnetic Magnetite Nanoparticles, J. Mater. Chem., 2003, vol. 13, pp. 1983–1987.

Pascal, C., Pascal, J.L., Favier, F., and Payen, C., Electrochemical Synthesis for the Control of Gamma-Fe2O3 Nanoparticle Size, Morphology, Microstructure and Magnetic Behavior, Chem. Mater., 1999, vol. 11, pp. 141–147.

Vijayakumar, R., Koltypin, Y., Felner, I., and Gedanken, A., Sonochemical Synthesis and Characterization of Pure Nanometer-Sized Fe3O4 Particles, Mater. Sci. Eng., A, 2000, vol. 286, pp. 101–105.

Sun, S.H. and Zeng, H., Size-Controlled Synthesis of Magnetite Nanoparticles, J. Am. Chem. Soc., 2002, vol. 124, pp. 8204–8205.

Haque, K.E., Microwave Energy for Mineral Treatment Processes—A Brief Review, Int. J. Miner. Process., 1999, vol. 57, pp. 1–24.

Katz, J.D., Microwave Sintering of Ceramics, Ann. Rev. Mater. Sci., 1992, vol. 22, pp. 153–170.

Gedye, R., Smith, F., Westaway, K., et al., Use of Microwave Ovens for Rapid Orbanic Synthesis, Tetrahedron Lett., 1986, vol. 27, pp. 279–282.

Li, X., Zhu, X.L., Cheng, Z.P., et al., Atom-Transfer Radical Polymerization of Methyl Methacrylate with A,A′-Dichloroxylene/Cucl/N,N,N′,N′,N′-Pentamethyldiethylenetriamine Initiation System under Microwave Irradiation, J. Appl. Polym. Sci., 2004, vol. 92, pp. 2189–2195.

Zhang, W.M., Gao, J., and Wu, C., Microwave Preparation of Narrowly Distributed Surfactant-Free Stable Polystyrene Nanospheres, Macromolecules, 1997, vol. 30, pp. 6388–6390.

Liu, C.H., Zhou, Z.D., Yu, X., et al., Preparation and Characterization of Fe3O4/Ag Composite Magnetic Nanoparticles, Inorg. Mater, 2008, vol. 44, no. 3, pp. 291–295.

Hong, R.Y., Li, J.H., Li, H.Z., et al., Synthesis of Fe3O4 Nanoparticles without Inert Gas Protection Used As Precursors of Magnetic Fluids, J. Magn. Magn. Mater., 2008, vol. 320, pp. 1605–1614.

Fang, B., Wang, G.F., Zhang, W.Z., et al., Fabrication of Fe3O4 Nanoparticles Modified Electrode and Its Application for Voltammetric Sensing of Dopamine, Electroanalysis, 2005, vol. 17, no. 9, pp. 744–748.

Rehr, J.J., Mustre De Leon, J., Zabinsky, S.I., and Albers, R.C., Theoretical X-Ray Absorption Fine Structure Standards, J. Am. Chem. Soc., 1991, vol. 113, pp. 5135–5140.

Lu, A.H., Salabas, E.L., and Schüth, F., Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application, Angew. Chem., Int. Ed., 2007, vol. 46, pp. 1222–1244.

Ge, S., Shi, X.Y., Sun, K., et al., Facile Hydrothermal Synthesis of Iron Oxide Nanoparticles with Tunable Magnetic Properties, J. Phys. Chem. C, 2009, vol. 113, no. 31, pp. 13593–13599.