Fast linear solver for diffusion problems with applications to pressure computation in layered domains
Tóm tắt
Accurate simulation of fluid pressures in layered reservoirs with strong permeability contrasts is a challenging problem. For this purpose, the Discontinuous Galerkin (DG) method has become increasingly popular. Unfortunately, standard linear solvers are usually too inefficient for the aforementioned application. To increase the efficiency of the conjugate gradient (CG) method for linear systems resulting from symmetric interior penalty (discontinuous) Galerkin (SIPG) discretizations, we cast an existing two-level preconditioner into the deflation framework. The main idea is to use coarse corrections based on the DG solution with polynomial degree p = 0. This paper provides a numerical comparison of the performance of the original preconditioner and the resulting deflation variant in terms of scalability and overall efficiency. Furthermore, it studies the influence of the SIPG penalty parameter, weighted averages in the SIPG formulation (SWIP), the smoother, damping of the smoother, and the strategy for solving the coarse systems. We have found that the penalty parameter can best be chosen diffusion-dependent. In that case, both two-level methods yield fast and scalable convergence. Whether preconditioning or deflation is to be favored depends on the choice of the smoother and on the damping of the smoother. Altogether, both two-level methods can contribute to cheaper and more accurate fluid pressure simulations.
Tài liệu tham khảo
Antonietti, P.F., Ayuso, B.: Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case. M2AN Math. Model. Numer. Anal. 41(1), 21–54 (2007)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (electronic) (2002)
Axelsson, O., Vassilevski, P.S.: Variable-step multilevel preconditioning methods. I. Selfadjoint and positive definite elliptic problems. Numer. Linear Algebra Appl. 1(1), 75–101 (1994)
Ayuso de Dios, B., Holst, M., Zhu, Y., Zikatanov, L.: Multilevel preconditioners for discontinuous Galerkin approximations of elliptic problems with jump coeffients. arXiv:1012.1287v2 (2012)
Brenner, S.C., Zhao, J.: Convergence of multigrid algorithms for interior penalty methods. Appl. Numer. Anal. Comput. Math. 2(1), 3–18 (2005)
Burman, E., Zunino, P.: A domain decomposition method based on weighted interior penalties for advection-diffusion-reaction problems. SIAM J. Numer. Anal. 44(4), 1612–1638 (electronic) (2006)
Castillo, P.: Performance of discontinuous Galerkin methods for elliptic PDEs. SIAM J. Sci. Comput. 24(2), 524–547 (2002)
Dobrev, V.A., Lazarov, R.D., Vassilevski, P.S., Zikatanov, L.T.: Two-level preconditioning of discontinuous Galerkin approximations of second-order elliptic equations. Numer. Linear Algebra Appl. 13(9), 753–770 (2006)
Dobrev, V.A., Lazarov, R.D., Zikatanov, L.T.: Preconditioning of symmetric interior penalty discontinuous Galerkin FEM for elliptic problems. In: Domain Decomposition Methods in Science and Engineering XVII, Lecture Notes in Computer Science and Engineering, vol. 60, pp. 33–44. Springer, Berlin (2008)
Dryja, M.: On discontinuous Galerkin methods for elliptic problems with discontinuous coefficients. Comput. Methods Appl. Math. 3(1), 76–85 (electronic) (2003). Dedicated to Raytcho Lazarov
Epshteyn, Y., Rivière, B.: Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J. Comput. Appl. Math. 206(2), 843–872 (2007)
Ern, A., Stephansen, A., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29(2), 235–256 (2009). doi:10.1093/imanum/drm050
Falgout, R.D., Vassilevski, P.S., Zikatanov, L.T.: On two-grid convergence estimates. Numer. Linear Algebra Appl. 12(5–6), 471–494 (2005)
Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39(4), 1343–1365 (electronic) (2001)
Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207(1), 92–113 (2005). doi:10.1016/j.jcp.2005.01.005
Gopalakrishnan, J., Kanschat, G.: A multilevel discontinuous Galerkin method. Numer. Math. 95(3), 527–550 (2003)
Kuznetsov, Y.: Matrix computational processes in subspaces. In: Glowinski, R., Lions, J. (eds) Computing Methods in Applied Sciences and Engineering, vol. VI, pp. 15–31. North-Holland. (1984). Proceedings of the 6th International Symposium on Computing Methods in Applied Sciences and Engineering, Versailles, France, December 12–16, (1983)
Lacroix, S., Vassilevski, Y., Wheeler, J., Wheeler, M.: Iterative solution methods for modeling multiphase flow in porous media fully implicitly. SIAM J. Sci. Comput. 25(3), 905–926 (2003)
Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9, 233–241 (1993)
Mandel, J., Brezina, M.: Balancing domain decomposition for problems with large jumps in coefficients. Math. Comput. 65(216), 1387–1401 (1996)
Nicolaides, R.A.: Deflation of conjugate gradients with applications to boundary value problems. SIAM J. Numer. Anal. 24(2), 355–365 (1987)
Notay, Y.: Flexible conjugate gradients. SIAM J. Sci. Comput. 22(4), 1444–1460 (electronic) (2000)
Persson, P.O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)
Prill, F., Lukáčová-Medviďová, M., Hartmann, R.: Smoothed aggregation multigrid for the discontinuous Galerkin method. SIAM J. Sci. Comput. 31(5), 3503–3528 (2009)
Proft, J., Rivière, B.: Discontinuous Galerkin methods for convection-diffusion equations for varying and vanishing diffusivity. Int. J. Numer. Anal. Model. 6(4), 533–561 (2009)
Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations. In: Frontiers in Applied Mathematics, vol. 35. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2008). Theory and implementation
Rivière, B., Wheeler, M., Banas̀, K.: Part ii. discontinuous galerkin method applied to a single-phase flow in porous media. Comput. Geosci. 4, 337–349 (2000)
Saad, Y., Suchomel, B.: ARMS: an algebraic recursive multilevel solver for general sparse linear systems. Numer. Linear Algebra Appl. 9(5), 359–378 (2002). doi:10.1002/nla.279
Sherwin, S.J., Kirby, R.M., Peiró, J., Taylor, R.L., Zienkiewicz, O.C.: On 2D elliptic discontinuous Galerkin methods. Int. J. Numer. Methods Eng. 65(5), 752–784 (2006)
van Slingerland, P., Vuik, C.: Scalable two-level preconditioning and deflation base on a piecewise constant subspace for (SIP)DG systems. Tech. Rep. 12–11, Delft University of Technology (2012)
Stüben, K.: An introduction to algebraic multigrid. In: Trottenberg, U., Oosterlee, C.W., Schüller, A. (eds.) Multigrid, pp. 413–532. Academic Press, New York (2001)
Sun, S., Wheeler, M.: Local problem-based a posteriori error estimators for discontinuous galerkin approximations of reactive transport. Comput. Geosci. 11(2), 87–101 (2007)
Tang, J.M., MacLachlan, S.P., Nabben, R., Vuik, C.: A comparison of two-level preconditioners based on multigrid and deflation. SIAM J. Matrix Anal. Appl. 31(4), 1715–1739 (2010)
Tang, J.M., Nabben, R., Vuik, C., Erlangga, Y.A.: Comparison of two-level preconditioners derived from deflation, domain decomposition, and multigrid methods. J. Sci. Comput. 39(3), 340–370 (2009)
Vassilevski, P.S.: Multilevel block factorization preconditioners. Matrix-based analysis and algorithms for solving finite element equations. Springer, New York (2008)
Vassilevski, Y.: A hybrid domain decomposition method based on aggregation. Numer Linear Algebra Appl. 11(4), 327–341 (2004)
Vuik, C., Segal, A., Meijerink, J.: An efficient preconditioned CG method for the solution of a class of layered problems with extreme contrasts in the coefficients. J. Comput. Phys. 152, 385–403 (1999)
Vuik, C., Segal, A., Meijerink, J., Wijma, G.: The construction of projection vectors for a Deflated ICCG method applied to problems with extreme contrasts in the coefficients. J. Comput. Phys. 172, 426–450 (2001)
Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev 34(4), 581–613 (1992)
Yavneh, I.: Why multigrid methods are so efficient. Comput. Sci. Eng. 8(6), 12–22 (2006)