Fast ionic conduction in semiconductor CeO2-δ electrolyte fuel cells

NPG Asia Materials - Tập 11 Số 1 - 2019
Baoyuan Wang1, Bin Zhu1, Sining Yun2, Wei Zhang1, Xia Chen1, Muhammad Afzal3, Yixiao Cai4, Yanyan Liu3, Yi Wang5, Hao Wang1
1Hubei Key Laboratory of Ferro & Piezoelectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan, Hubei, 430062, PR China
2Functional Materials Laboratory (FML), School of Materials & Mineral Resources, Xi’an University of Architecture and Technology, Xi’an, 710055, China
3Department of Energy Technology, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
4State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Textile Pollution Controlling Engineering Centre of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai, 201620, China
5Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

Tóm tắt

AbstractProducing electrolytes with high ionic conductivity has been a critical challenge in the progressive development of solid oxide fuel cells (SOFCs) for practical applications. The conventional methodology uses the ion doping method to develop electrolyte materials, e.g., samarium-doped ceria (SDC) and yttrium-stabilized zirconia (YSZ), but challenges remain. In the present work, we introduce a logical design of non-stoichiometric CeO2-δ based on non-doped ceria with a focus on the surface properties of the particles. The CeO2−δ reached an ionic conductivity of 0.1 S/cm and was used as the electrolyte in a fuel cell, resulting in a remarkable power output of 660 mW/cm2 at 550 °C. Scanning transmission electron microscopy (STEM) combined with electron energy-loss spectroscopy (EELS) clearly clarified that a surface buried layer on the order of a few nanometers was composed of Ce3+ on ceria particles to form a CeO2−δ@CeO2 core–shell heterostructure. The oxygen deficient layer on the surface provided ionic transport pathways. Simultaneously, band energy alignment is proposed to address the short circuiting issue. This work provides a simple and feasible methodology beyond common structural (bulk) doping to produce sufficient ionic conductivity. This work also demonstrates a new approach to progress from material fundamentals to an advanced low-temperature SOFC technology.

Từ khóa


Tài liệu tham khảo

Moore, J. E. The birth of topological insulators. Nature 464, 194–198 (2010).

Cava, R. J., Ji, H. W., Fuccillo, M. K., Gibson, Q. D. & Hor, Y. S. Crystal structure and chemistry of topological insulators. J. Mater. Chem. C. 1, 3176–3189 (2013).

Roche, F. O. S., Valenzuela, O. & Topological, S. Insulators Fundamentals and Perspectives. (Wiley, Hoboken, 2015).

Reyren, N. et al. Superconducting Interfaces Between Insulating Oxides. Science 317, 1196–1199 (2007).

Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010).

Garcia-Barriocanal, J. et al. Colossal ionic conductivity at interfaces of epitaxial ZrO2:Y2O3/SrTiO3 heterostructures. Science 321, 676–680 (2008).

Kilner, J. A. Ionic conductors: feel the strain. Nat. Mater. 7, 838–839 (2008).

Lee, S. et al. Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 15, 7362–7369 (2015).

Yang, S. M. et al. Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 8588 (2015).

O’Sullivan, M. et al. Interface control by chemical and dimensional matching in an oxide heterostructure. Nat. Chem. 8, 347–353 (2016).

Lin, Y., Fang, S., Su, D., Brinkman, K. S. & Chen, F. Enhancing grain boundary ionic conductivity in mixed ionic–electronic conductors. Nat. Commun. 6, 6824 (2015).

Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010).

Leon, C., Santamaria, J. & A.Boukamp, B. Oxide interfaces with enhanced ion conductivity. MRS Bull. 38, 1056–1063 (2013).

Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–983 (2003).

Deluga, G. A., Salge, J. R., Schmidt, L. D. & Verykios, X. E. Renewable hydrogen from ethanol by autothermal reforming. Science 303, 993–997 (2004).

Alessandro, T., Carla, de, L., Marta, B. & Giuliano, D. The utilization of ceria in industrial catalysis. Catal. Today 50, 353–367 (1999).

Cormai, A., Atienzari, P., Garciai, H. & Chane-Ching, J.-Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 3, 394–397 (2004).

Carvalho, L. G. A. et al. Color tunability in green, red and infra-red upconversion emission in Tm3+/Yb3+/Ho3+ co-doped CeO2 with potential application for improvement of efficiency in solar cells. J. Lumin. 159, 223–228 (2015).

Lu, X. H. et al. Facile synthesis of free-standing CeO2 nanorods for photoelectrochemical applications. Chem. Commun. 46, 7721–7723 (2010).

Hua, C. X. et al. Q. Lithium storage mechanism and catalytic behavior of CeO2. Electrochem. Commun. 25, 66–69 (2012).

Wang, G., Bai, J. T., Wang, Y. H., Ren., Z. Y. & Bai, J. B. Prepartion and electrochemical performance of a cerium oxide–graphene nanocomposite as the anode material of a lithium ion battery. Scr. Mater. 65, 339–342 (2011).

Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

Park, S. D., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).

Melchionna, M. & Fornasiero, P. The role of ceria-based nanostructured materials in energy applications. Mater. Today 17, 349–357 (2014).

Sun, C. W., Li, H. & Chen, L. Q. Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ. Sci. 5, 8475–8505 (2012).

Campbell, C. T. & Peden, C. H. F. Oxygen vacancies and catalysis on ceria surfaces. Science 309, 713–714 (2005).

Knoblauch, N., Dörrer, L., Fielitz, P., Schmücker, M. & Borchardt, G. Surface controlled reduction kinetics of nominally undoped polycrystalline CeO2. Phys. Chem. Chem. Phys. 17, 5849–5860 (2015).

Chen, X. Y., Yu, J. S. & Adler, S. B. Thermal and chemical expansion of Sr-doped lanthanum cobalt oxide (La1−xSrxCoO3−δ). Chem. Mater. 17, 4537–4546 (2005).

Hong, T., Zhang, Y. X. & Brinkman, K. Enhanced oxygen electrocatalysis in heterostructured ceria electrolytes for intermediate-temperature solid oxide fuel cells. ACS Omega 3, 13559–13566 (2018).

Zhang, T. S., Peter, H., Huang, H. T. & Kilner, J. Ionic conductivity in the CeO2–Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation. Solid State Ion. 148, 567–573 (2002).

Shen, S. L., Yang, Y. P., Guo, L. J. & Liu, H. T. A polarization model for a solid oxide fuel cell with a mixed ionic and electronic conductor as electrolyte. J. Power Sources 256, 43–51 (2014).

Tschöpe, A. & Birringer, R. Grain size dependence of electrical conductivity in polycrystalline cerium oxide. J. Electroceram. 7, 169–177 (2001).

Goodenough, J. B. Oxide-ion conductors by design. Nature 404, 821–823 (2000).

Chadwick, A. V. Solid progress in ion conduction. Nature 408, 925–926 (2000).

Feng, B. et al. Atomic structures and oxygen dynamics of CeO2 grain boundaries. Sci. Rep. 6, 20288 (2015).

Fu, Y.-P., Chen, S.-H. & Huang, J.-J. Preparation and characterization of Ce0.8M0.2O2−δ (M = Y, Gd, Sm, Nd, La) solid electrolyte materials for solid oxide fuel cells. Int. J. Hydrog. Energy 35, 745–752 (2010).

Skorodumova, N. V., Simak, S. I., Lundqvist, B. I., Abrikosov, I. A. & Johansson, B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 89, 166601 (2002).

Wu, L. J. et al. Oxidation state and lattice expansion of CeO2−x nanoparticles as a function of particle size. Phys. Rev. B 69, 125415 (2004).

Ho, C. M. et al. Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem. Mater. 17, 4514–4522 (2005).

Zhou, Y. H., M. Perket, J. & Zhou, J. Growth of Pt nanoparticles on reducible CeO2 (111) thin films: effect of nanostructures and redox properties of ceria. J. Phys. Chem. C. 114, 11853–11860 (2010).

Bêche, E. et al. Ce 3d XPS investigation of cerium oxides and mixed cerium oxide (CexTiyOz). Surf. Interface Anal. 40, 264–267 (2008).

Gázquez, J. et al. Applications of STEM-EELS to complex oxides. Mat. Sci. Semicon. Proc. 65, 49–63 (2017).

Hojo, H. et al. Atomic structure of a CeO2 grain boundary: the role of oxygen vacancies. Nano Lett. 10, 4668–4672 (2010).

Song, K. P. et al. Cerium reduction at the interface between ceria and yttria-stabilised zirconia and implications for interfacial oxygen non-stoichiometry. APL Mater. 2, 032104 (2014).

Yan, D. T. et al. Electrical properties of grain boundaries and size effects in samarium-doped ceria. J. Power Sources 195, 6486–6490 (2010).

Zhu, B. et al. Novel fuel cell with nanocomposite functional layer designed by perovskite solar cell principle. Nano Energy 19, 156–164 (2016).

Zhu, B. et al. Charge separation and transport in La0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell. Nano Energy 37, 195–202 (2017).

Martin, D. & Duprez, D. Mobility of surface species on oxides. 1. Isotopic Exchange of 18O2 with 16O of SiO2, Al2O3, ZrO2, MgO, CeO2, and CeO2-Al2O3. Activation by noble metals. Correlation with oxide basicity. J. Phys. Chem. C. 100, 9429–9438 (1996).

Martin, D. & Duprez, D. Mobility of surface species on oxides. 2. Isotopic exchange of D2 with H of SiO2, Al2O3, ZrO2, MgO, and CeO2: Activation by rhodium and effect of chlorine. J. Phys. Chem. B 101, 4428–4436 (1997).

Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

Yokokawa et al. Thermodynamic reconsiderations on electronic properties of pure- and doped-ceria. ECS Trans. 28, 165–172 (2010).