Fast ion conduction assisted by covalent organic frameworks in poly(ethylene oxide)-based composite electrolyte enabling high-energy and strong-stability all-solid-state lithium metal batteries
Tài liệu tham khảo
Murugan, 2007, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem. Int. Edit., 46, 7778, 10.1002/anie.200701144
Xiao, 2019, Recent advances in Li1+xAlxTi2−x(PO4)3 solid-state electrolyte for safe lithium batteries, Energy Storage Mater, 19, 379, 10.1016/j.ensm.2018.10.012
Deiseroth, 2008, Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Edit., 47, 755, 10.1002/anie.200703900
Kato, 2020, Li10GeP2S12 -type superionic conductors: synthesis, structure, and ionic transportation, Adv. Energy Mater, 10, 10.1002/aenm.202002153
Mindemark, 2018, Beyond PEO-Alternative host materials for Li+ -conducting solid polymer electrolytes, Prog. Polym. Sci., 81, 114, 10.1016/j.progpolymsci.2017.12.004
Manthiram, 2017, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater., 2, 10.1038/natrevmats.2016.103
Chen, 2021, Research progress and application prospect of solid-state electrolytes in commercial lithium-ion power batteries, Energy Storage Mater, 35, 70, 10.1016/j.ensm.2020.11.017
Shen, 2019, Design principles of the anode–electrolyte interface for all solid-state lithium metal batteries, Small Methods, 4
Fang, 2021, Integrated PEO-based polymer electrolytes for all-solid-state lithium-metal batteries, Angew. Chem. Int. Edit., 60, 17701, 10.1002/anie.202106039
Wu, 2021, Applying multi-scale silica-like three-dimensional networks in a PEO matrix via in situ crosslinking for high-performance solid composite electrolytes, Mater. Chem. Front.
Chen, 2020, Enhancing the interfacial ionic transport via in Situ 3D composite polymer electrolytes for solid-state lithium batteries, ACS Appl. Energy Mater., 3, 7200, 10.1021/acsaem.0c01269
Chen, 2018, PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic, Nano Energy, 46, 176, 10.1016/j.nanoen.2017.12.037
Xu, 2015, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts, Nat. Chem., 7, 905, 10.1038/nchem.2352
Ding, 2013, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev., 42, 548, 10.1039/C2CS35072F
Zheng, 2020, A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures, Chem. Soc. Rev., 49, 8790, 10.1039/D0CS00305K
Zhang, 2019, Accumulation of glassy Poly(ethylene oxide) anchored in a covalent organic framework as a solid-state Li+ electrolyte, J. Am. Chem. Soc., 141, 1227, 10.1021/jacs.8b07670
Guo, 2019, Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks, J. Am. Chem. Soc., 141, 1923, 10.1021/jacs.8b13551
Xu, 2018, Ion conduction in polyelectrolyte covalent organic frameworks, J. Am. Chem. Soc., 140, 7429, 10.1021/jacs.8b03814
Yang, 2018, Functional conjugated polymers for CO2 reduction using visible light, Chem-Eur. J., 24, 17454, 10.1002/chem.201804496
Xu, 2021, Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities, J. Am. Chem. Soc., 143, 6542, 10.1021/jacs.1c00752
Pitawala, 2007, Combined effect of Al2O3 Nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf, Solid State Ionics, 178, 885, 10.1016/j.ssi.2007.04.008
Qin, 2015, Single-ion dominantly conducting polyborates towards high performance electrolytes in lithium batteries, J. Mater. Chem. A, 3, 7773, 10.1039/C5TA00216H
Zhang, 2019, A nitrogen-containing all-solid-state hyperbranched polymer electrolyte for superior performance lithium batteries, J. Mater. Chem. A, 7, 6801, 10.1039/C9TA00180H
Wang, 2017, Suppression of lithium dendrite formation by using LAGP-PEO (LiTFSI) composite solid electrolyte and lithium metal anode modified by PEO (LiTFSI) in all-solid-state lithium batteries, ACS Appl. Mater. Inter., 9, 13694, 10.1021/acsami.7b00336
Ghelichi, 2013, Conformational, thermal, and ionic conductivity behavior of PEO in PEO/PMMA miscible blend: investigating the effect of lithium salt, J. Appl. Polym. Sci., 129, 1868, 10.1002/app.38897
Li, 2019, Preparation and performance of poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium batteries, J. Appl. Polym. Sci., 136
Polu, 2015, Nanocomposite solid polymer electrolytes based on poly(ethylene oxide)/POSS-PEG (n=13.3) hybrid nanoparticles for lithium ion batteries, J. Ind. Eng. Chem., 31, 323, 10.1016/j.jiec.2015.07.005
Wu, 2020, Fast Li+ conduction mechanism and interfacial chemistry of a NASICON/Polymer composite electrolyte, J. Mater. Chem. A, 142, 2497
Zheng, 2017, Li-ion transport in a representative ceramic–polymer–plasticizer composite electrolyte: Li7La3Zr2O12–polyethylene oxide–tetraethylene glycol dimethyl ether, J. Mater. Chem. A, 5, 18457, 10.1039/C7TA05832B
Xu, 2019, High-performance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide), P. Natl. Acad. Sci. USA, 116, 18815, 10.1073/pnas.1907507116
He, 2020, All-purpose electrode design of flexible conductive scaffold toward high-performance Li–S batteries, Adv. Funct. Mater., 30
Liang, 2021, Vertical channels design for polymer electrolyte to enhance mechanical strength and ion conductivity, ACS Appl. Mater. Inter., 13, 42957, 10.1021/acsami.1c13834